Browse > Article
http://dx.doi.org/10.4062/biomolther.2022.049

Effects of Dextran Sulfate Sodium-Induced Ulcerative Colitis on the Disposition of Tofacitinib in Rats  

Bae, Sung Hun (College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University)
Kim, Hyo Sung (College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University)
Choi, Hyeon Gyeom (College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University)
Chang, Sun-Young (College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University)
Kim, So Hee (College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University)
Publication Information
Biomolecules & Therapeutics / v.30, no.6, 2022 , pp. 510-519 More about this Journal
Abstract
Tofacitinib, a Janus kinase 1 and 3 inhibitor, is mainly metabolized by CYP3A1/2 and CYP2C11 in the liver. The drug has been approved for the chronic treatment of severe ulcerative colitis, a chronic inflammatory bowel disease. This study investigated the pharmacokinetics of tofacitinib in rats with dextran sulfate sodium (DSS)-induced ulcerative colitis. After 1-min of intravenous infusion of tofacitinib (10 mg/kg), the area under the plasma concentration-time curves from time zero to time infinity (AUC) of tofacitinib significantly increased by 92.3%. The time-averaged total body clearance decreased significantly by 47.7% in DSS rats compared with control rats. After the oral administration of tofacitinib (20 mg/kg), the AUC increased by 85.5% in DSS rats. These results could be due to decreased intrinsic clearance of the drug caused by the reduction of CYP3A1/2 and CYP2C11 in the liver and intestine of DSS rats. In conclusion, ulcerative colitis inhibited CYP3A1/2 and CYP2C11 in the liver and intestines of DSS rats and slowed the metabolism of tofacitinib, resulting in increased plasma concentrations of tofacitinib in DSS rats.
Keywords
Tofacitinib; Ulcerative colitis; Dextran sulfate sodium; Pharmacokinetics; CYP3A1/2; CYP2C11;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Liu, Y. F., Niu, G. C., Li, C. Y., Guo, J. B., Song, J., Li, H. and Zhang, X. L. (2021) Mechanism of ulcerative colitis-aggravated liver fibrosis: the activation of hepatic stellate cells and TLR4 signaling through gut-liver axis. Front. Physiol. 12, 695019.   DOI
2 Sandborn, W. J., Peyrin-Biroulet, L., Sharara, A. I., Su, C., Modesto, I., Mundayat, R., Gunay, L. M., Salese, L. and Sands, B. E. (2022) Efficacy and safety of tofacitinib in ulcerative colitis based on prior tumor necrosis factor inhibitor failure status. Clin. Gastroenterol. Hepatol. 20, 591-601.   DOI
3 Sartor, R. B. (2008) Microbial influences in inflammatory bowel diseases. Gastroenterology 134, 577-594.   DOI
4 Scott, L. J. (2013) Tofacitinib: a review of its use in adult patients with rheumatoid arthritis. Drugs 73, 857-874.   DOI
5 Shin, W. G., Lee, M. G., Lee, M. H. and Kim, N. D. (1991) Factors influencing the protein binding of vancomycin. Biopharm. Drug Dispos. 12, 637-646.   DOI
6 Hu, N., Ling, J., Dong, L., Jiang, Y., Zhou, Q. and Zou, S. (2020) Pharmacokinetics of omeprazole in rats with dextran sulfate sodium-induced ulcerative colitis. Drug Metab. Pharmacokinet. 35, 297-303.   DOI
7 Fukuda, T., Naganuma, M. and Kanai, T. (2019) Current new challenges in the management of ulcerative colitis. Intest. Res. 17, 36-44.   DOI
8 Gao, X. J., Li, T., Wei, B., Yan, Z. X. and Yan, R. (2017) Regulatory mechanisms of gut microbiota on intestinal CYP3A and P-glycoprotein in rats with dextran sulfate sodium-induced colitis. Yao Xue Xue Bao 52, 34-43.
9 Gwak, E. H., Yoo, H. Y. and Kim, S. H. (2020) Effects of diabetes mellitus on the disposition of tofacitinib, a Janus kinase inhibitor, in rats. Biomol. Ther. (Seoul) 28, 361-369.   DOI
10 Solomon, L., Mansor, S., Mallon, P., Donnelly, E., Hoper, M., Loughrey, M., Kirk, S. and Gardiner, K. (2010) The dextran sulphate sodium (DSS) model of colitis: an overview. Comp. Clin. Pathol. 19, 235-239.   DOI
11 Svein, O. and Theodor, W. G. (1982) Comparison of equilibrium time in dialysis experiments using spiked plasma or spiked buffer. J. Pharm. Sci. 71, 127-128.   DOI
12 Taurog, J. D., Richardson, J. A., Croft, J. T., Simmons, W. A., Zhou, M., Fernandez-Sueiro, J. L., Balish, E. and Hammer, R. E. (1994) The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med. 180, 2359-2364.   DOI
13 Wada, T., Gao, J. and Xie, W. (2009) PXR and CAR in energy metabolism. Trends Endocrinol. Metab. 20, 273-279.   DOI
14 Yang, Y., Hu, N., Gao, X. J., Li, T., Yan, Z. X., Wang, P. P., Wei, B., Li, S., Zhang, Z. J., Li, S. L. and Yan, R. (2021) Dextran sulfate sodium-induced colitis and ginseng intervention altered oral pharmacokinetics of cyclosporine A in rats. J. Ethnopharmacol. 265, 113251.   DOI
15 Duggleby, R. G. (1995) Analysis of enzyme progress curves by nonlinear regression. Methods Enzymol. 249, 61-90.   DOI
16 Kim, J. E., Park, M. Y. and Kim, S. H. (2020) Simple determination and quantification of tofacitinib, a JAK inhibitor, in rat plasma, urine and tissue homogenates by HPLC and its application to a pharmacokinetic study. J. Pharm. Investig. 50, 603-612.   DOI
17 Baumgart, D. C. and Carding, S. R. (2007) Inflammatory bowel disease: cause and immunobiology. Lancet 369, 1627-1640.   DOI
18 Changelian, P. S., Moshinsky, D., Kuhn, C. F., Flanagan, M. E., Munchhof, M. J., Harris, T. M., Whipple, D. A., Doty, J. L., Sun, J., Kent, C. R., Magnuson, K. S., Perregaux, D. G., Sawyer, P. S. and Kudlacz, E. M. (2008) The specificity of JAK3 kinase inhibitors. Blood 111, 2155-2157.   DOI
19 Kim, S. H., Lee, J. S. and Lee, M. G. (1999) Stability, blood partition and plasma protein binding of ipriflavone, an isoflavone derivative. Biopharm. Drug Dispos. 20, 355-360.   DOI
20 Claxton, L., Taylor, M., Soonasra, A., Bourret, J. A. and Gerber, R. A. (2018) An economic evaluation of tofacitinib treatment in rheumatoid arthritis after methotrexate or after 1 or 2 TNF inhibitors from a U.S. payer perspective. J. Manag. Care Spec. Pharm. 24, 1010-1017.
21 Fan, X., Ding, X. and Zhang, Q. Y. (2020) Hepatic and intestinal biotransformation gene expression and drug disposition in a dextran sulfate sodium-induced colitis mouse model. Acta Pharm. Sin. B. 10, 123-135.   DOI
22 Ordas, I., Eckmann, L., Talamini, M., Baumgart, D. C. and Sandborn W. J. (2012) Ulcerative colitis. Lancet 380, 1606-1619.   DOI
23 Kusunoki, Y., Kido, Y., Naito, Y., Kon, R., Mizukami, N., Kaneko, M., Wakui, N., Machida, Y. and Ikarashi, N. (2017) Changes in the pharmacokinetics of phenytoin in dextran sulfate sodium-induced ulcerative colitis in mice. Int. J. Toxicol. 36, 485-491.   DOI
24 Lee, J. S. and Kim, S. H. (2019) Dose-dependent pharmacokinetics of tofacitinib in rats: Influence of hepatic and intestinal first-pass metabolism. Pharmaceutics 11, 318.   DOI
25 Masubuchi, Y. and Horie, T. (2004) Endotoxin-mediated disturbance of hepatic cytochrome P450 function and development of endotoxin tolerance in the rat model of dextran sulfate sodium-induced experimental colitis. Drug Metab. Dispos. 32, 437-441.   DOI
26 Mori, M., Stokes, K. Y., Vowinkel, T., Watanabe, N., Elrod, J. W., Harris, N. R., Lefer, D. J., Hibi, T. and Granger, D. N. (2005) Colonic blood flow responses in experimental colitis: time course and underlying mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G1024-G1029.   DOI
27 Mitruka, B. M. and Rawnsley, H. M. (1981) Clinical biomedical and hematological reference values in normal experimental animals and normal humans, 2nd ed. Masson Publishing, USA Inc., New York.
28 Ahn, C. Y., Bae, S. K., Bae, S. H., Kim, T., Jung, Y. S., Kim, Y. C., Lee, M. G. and Shin, W. G. (2009) Pharmacokinetics of oltipraz in diabetic rats with liver cirrhosis. Br. J. Pharmacol. 156, 1019-1028.   DOI
29 Bae, S. H., Chang, S. Y. and Kim, S. H. (2020) Slower elimination of tofacitinib in acute renal failure rat models: contribution of hepatic metabolism and renal excretion. Pharmaceutics 12, 714.   DOI
30 Okayasu, I., Hatakeyama, S., Yamada, M., Ohkusa, T., Inagaki, Y. and Nakaya, R. (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 98, 694-702.   DOI
31 Chiou, W. L. (1978) Critical evaluation of the potential error in pharmacokinetic studies of using the linear trapezoidal rule method for the calculation of the area under the plasma level--time curve. J. Pharmacokinet. Biopharm. 6, 539-546.   DOI
32 Bergan, T., Bjerke, P. E. and Fausa, O. (1981) Pharmacokinetics of metronidazole in patients with enteric disease compared to normal volunteers. Chemotherapy 27, 233-238.   DOI
33 Cada, D. J., Demaris, K., Levien, T. L. and Baker, D. E. (2013) Tofacitinib. Hosp. Pharm. 48, 413-424.   DOI
34 Chen, C., Shah, Y. M., Morimura, K., Krausz, K. W., Miyazaki, M., Richardson, T. A., Morgan, E. T., Ntambi, J. M., Idle, J. R. and Gonzalez, F. J. (2008) Metabolomics reveals that hepatic stearoyl-CoA desaturase 1 downregulation exacerbates inflammation and acute colitis. Cell Metab. 7, 135-147.   DOI
35 Gibaldi, M. and Perrier, D. (1982) Pharmacokinetics, 2nd ed. Marcel-Dekker, New York.
36 Park, H. J., Bae, S. H. and Kim, S. H. (2021) Dose-independent pharmacokinetics of loganin in rats: effect of intestinal first-pass metabolism on bioavailability. J. Pharm. Investig. 51, 767-776.   DOI
37 Pastor Rojo, O., Lopez San Roman, A., Albeniz Arbizu, E., de la Hera Martinez, A., Ripoll Sevillano, E. and Albillos Martinez, A. (2007) Serum lipopolysaccharide-binding protein in endotoxemic patients with inflammatory bowel disease. Inflamm. Bowel Dis. 13, 269-277.   DOI
38 Flanagan, M. E., Blumenkopf, T. A., Brissette, W. H., Brown, M. F., Casavant, J. M., Shang-Poa, C., Doty, J. L., Elliott, E. A., Fisher, M. B., Hines, M., Kent, C., Kudlacz, E. M., Lillie, B. M., Magnuson, K. S., McCurdy, S. P., Munchhof, M. J., Perry, B. D., Sawyer, P. S., Strelevitz, T. J., Subramanyam, C., Sun, J., Whipple, D. A. and Changelian, P. S. (2010) Discovery of CP-690,550: a potent and selective Janus kinase (JAK) inhibitor for the treatment of autoimmune diseases and organ transplant rejection. J. Med. Chem. 53, 8468-8484.
39 Daujat-Chavanieu, M. and Gerbal-Chaloin, S. (2020) Regulation of CAR and PXR expression in health and disease. Cells 9, 2395.   DOI
40 Dowty, M. E., Lin, J., Ryder, T. F., Wang, W., Walker, G. S., Vaz, A., Chan, G. L., Krishnaswami, S. and Prakash, C. (2014) The pharmacokinetics, metabolism and clearance mechanisms of tofacitinib, a Janus kinase inhibitor, in humans. Drug Metab. Dispos. 42, 759-773.   DOI
41 Hussar, D. A. (2014) 2013 new drug update: what do new approvals hold for the elderly? Consult. Pharm. 29, 224-238.   DOI
42 Kumagai, M., Ishii, M., Morimoto, K. and Tomita, M. (2020) Increased membrane permeation and blood concentration of 6-carboxyfluorescein associated with dysfunction of paracellular route barrier in the small intestine of ulcerative colitis model rats. Biopharm. Drug Dispos. 41, 91-100.   DOI
43 Kusunoki, Y., Ikarashi, N., Hayakawa, Y., Ishii, M., Kon, R., Ochiai, W., Machida,Y. and Sugiyama, K. (2014) Hepatic early inflammation induces downregulation of hepatic cytochrome P450 expression and metabolic activity in the dextran sulfate sodium-induced murine colitis. Eur. J. Pharm. Sci. 54, 17-27.   DOI
44 Latteri, M., Angeloni, G., Silveri, N. G., Manna, R., Gasbarrini, G. and Navarra, P. (2001) Pharmacokinetics of cyclosporin microemulsion in patients with inflammatory bowel disease. Clin. Pharmacokinet. 40, 473-483.   DOI
45 Lee, Y. K., Chin, Y. W. and Choi, Y. H. (2013) Effects of Korean red ginseng extract on acute renal failure induced by gentamicin and pharmacokinetic changes by metformin in rats. Food Chem. Toxicol. 59, 153-159.   DOI