Browse > Article
http://dx.doi.org/10.4062/biomolther.2020.218

Bioactive Sphingolipids as Major Regulators of Coronary Artery Disease  

Song, Jae-Hwi (Department of Life Science, Gachon University)
Kim, Goon-Tae (Department of Life Science, Gachon University)
Park, Kyung-Ho (Department of Nutrition, Hallym University)
Park, Woo-Jae (Department of Biochemistry, College of Medicine, Gachon University)
Park, Tae-Sik (Department of Life Science, Gachon University)
Publication Information
Biomolecules & Therapeutics / v.29, no.4, 2021 , pp. 373-383 More about this Journal
Abstract
Atherosclerosis is the deposition of plaque in the main arteries. It is an inflammatory condition involving the accumulation of macrophages and various lipids (low-density lipoprotein [LDL] cholesterol, ceramide, S1P). Moreover, endothelial cells, macrophages, leukocytes, and smooth muscle cells are the major players in the atherogenic process. Sphingolipids are now emerging as important regulators in various pathophysiological processes, including the atherogenic process. Various sphingolipids exist, such as the ceramides, ceramide-1-phosphate, sphingosine, sphinganine, sphingosine-1-phosphate (S1P), sphingomyelin, and hundreds of glycosphingolipids. Among these, ceramides, glycosphingolipids, and S1P play important roles in the atherogenic processes. The atherosclerotic plaque consists of higher amounts of ceramide, glycosphingolipids, and sphingomyelin. The inhibition of the de novo ceramide biosynthesis reduces the development of atherosclerosis. S1P regulates atherogenesis via binding to the S1P receptor (S1PR). Among the five S1PRs (S1PR1-5), S1PR1 and S1PR3 mainly exert anti-atherosclerotic properties. This review mainly focuses on the effects of ceramide and S1P via the S1PR in the development of atherosclerosis. Moreover, it discusses the recent findings and potential therapeutic implications in atherosclerosis.
Keywords
Sphingolipid; Ceramide; Sphingosine 1-phosphate; Sphingosine-1-phosphate receptor; Atherosclerosis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jiang, X. C., Paultre, F., Pearson, T. A., Reed, R. G., Francis, C. K., Lin, M., Berglund, L. and Tall, A. R. (2000) Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 20, 2614-2618.   DOI
2 Zilversmit, D. B., Mc, C. E., Jordan, P. H., Henly, W. S. and Ackerman, R. F. (1961) The synthesis of phospholipids in human atheromatous lesions. Circulation 23, 370-375.   DOI
3 Chavez, J. A., Holland, W. L., Bar, J., Sandhoff, K. and Summers, S. A. (2005) Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling. J. Biol. Chem. 280, 20148-20153.   DOI
4 Knapp, M., Baranowski, M., Czarnowski, D., Lisowska, A., Zabielski, P., Gorski, J. and Musial, W. (2009) Plasma sphingosine-1-phosphate concentration is reduced in patients with myocardial infarction. Med. Sci. Monit. 15, CR490-CR493.
5 Koh, I. U., Jun, H. S., Choi, J. S., Lim, J. H., Kim, W. H., Yoon, J. B. and Song, J. (2012) Fenretinide ameliorates insulin resistance and fatty liver in obese mice. Biol. Pharm. Bull. 35, 369-375.   DOI
6 Kolesnick, R. (2002) The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J. Clin. Invest. 110, 3-8.   DOI
7 Holland, W. L., Miller, R. A., Wang, Z. V., Sun, K., Barth, B. M., Bui, H. H., Davis, K. E., Bikman, B. T., Halberg, N., Rutkowski, J. M., Wade, M. R., Tenorio, V. M., Kuo, M. S., Brozinick, J. T., Zhang, B. B., Birnbaum, M. J., Summers, S. A. and Scherer, P. E. (2011) Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 17, 55-63.   DOI
8 Munoz-Olaya, J. M., Matabosch, X., Bedia, C., Egido-Gabas, M., Casas, J., Llebaria, A., Delgado, A. and Fabrias, G. (2008) Synthesis and biological activity of a novel inhibitor of dihydroceramide desaturase. ChemMedChem 3, 946-953.   DOI
9 Adams, J. M., 2nd, Pratipanawatr, T., Berria, R., Wang, E., DeFronzo, R. A., Sullards, M. C. and Mandarino, L. J. (2004) Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 53, 25-31.   DOI
10 Turpin, S. M., Nicholls, H. T., Willmes, D. M., Mourier, A., Brodesser, S., Wunderlich, C. M., Mauer, J., Xu, E., Hammerschmidt, P., Bronneke, H. S., Trifunovic, A., LoSasso, G., Wunderlich, F. T., Kornfeld, J. W., Bluher, M., Kronke, M. and Bruning, J. C. (2014) Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 20, 678-686.   DOI
11 Argraves, K. M., Sethi, A. A., Gazzolo, P. J., Wilkerson, B. A., Remaley, A. T., Tybjaerg-Hansen, A., Nordestgaard, B. G., Yeatts, S. D., Nicholas, K. S., Barth, J. L. and Argraves, W. S. (2011) S1P, dihydro-S1P and C24:1-ceramide levels in the HDL-containing fraction of serum inversely correlate with occurrence of ischemic heart disease. Lipids Health Dis. 10, 70.   DOI
12 Hait, N. C., Oskeritzian, C. A., Paugh, S. W., Milstien, S. and Spiegel, S. (2006) Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim. Biophys. Acta 1758, 2016-2026.   DOI
13 Hammerschmidt, P., Ostkotte, D., Nolte, H., Gerl, M. J., Jais, A., Brunner, H. L., Sprenger, H. G., Awazawa, M., Nicholls, H. T., TurpinNolan, S. M., Langer, T., Kruger, M., Brugger, B. and Bruning, J. C. (2019) CerS6-derived sphingolipids interact with Mff and Promote mitochondrial fragmentation in obesity. Cell 177, 1536-1552.e23.   DOI
14 Hanada, K. (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim. Biophys. Acta 1632, 16-30.   DOI
15 Haus, J. M., Kashyap, S. R., Kasumov, T., Zhang, R., Kelly, K. R., Defronzo, R. A. and Kirwan, J. P. (2009) Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 58, 337-343.   DOI
16 Boon, J., Hoy, A. J., Stark, R., Brown, R. D., Meex, R. C., Henstridge, D. C., Schenk, S., Meikle, P. J., Horowitz, J. F., Kingwell, B. A., Bruce, C. R. and Watt, M. J. (2013) Ceramides contained in LDL are elevated in type 2 diabetes and promote inflammation and skeletal muscle insulin resistance. Diabetes 62, 401-410.   DOI
17 Neeland, I. J., Singh, S., McGuire, D. K., Vega, G. L., Roddy, T., Reilly, D. F., Castro-Perez, J., Kozlitina, J. and Scherer, P. E. (2018) Relation of plasma ceramides to visceral adiposity, insulin resistance and the development of type 2 diabetes mellitus: the Dallas Heart Study. Diabetologia 61, 2570-2579.   DOI
18 Nicholls, M. (2017) Plasma ceramides and cardiac risk. Eur. Heart J. 38, 1359-1360.   DOI
19 Mukhin, D. N., Chao, F. F. and Kruth, H. S. (1995) Glycosphingolipid accumulation in the aortic wall is another feature of human atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 15, 1607-1615.   DOI
20 Castro, B. M., Prieto, M. and Silva, L. C. (2014) Ceramide: a simple sphingolipid with unique biophysical properties. Prog. Lipid Res. 54, 53-67.   DOI
21 Chaurasia, B. and Summers, S. A. (2015) Ceramides - lipotoxic inducers of metabolic disorders. Trends Endocrinol. Metab. 26, 538-550.   DOI
22 Cheng, L., Chen, Y. Z., Peng, Y., Yi, N., Gu, X. S., Jin, Y. and Bai, X. M. (2015b) Ceramide production mediates cinobufotalin-induced growth inhibition and apoptosis in cultured hepatocellular carcinoma cells. Tumour Biol. 36, 5763-5771.   DOI
23 Delgado, A., Casas, J., Llebaria, A., Abad, J. L. and Fabrias, G. (2006) Inhibitors of sphingolipid metabolism enzymes. Biochim. Biophys. Acta 1758, 1957-1977.   DOI
24 Rodriguez-Cuenca, S., Barbarroja, N. and Vidal-Puig, A. (2015) Dihydroceramide desaturase 1, the gatekeeper of ceramide induced lipotoxicity. Biochim. Biophys. Acta 1851, 40-50.   DOI
25 Peterson, L. R., Xanthakis, V., Duncan, M. S., Gross, S., Friedrich, N., Volzke, H., Felix, S. B., Jiang, H., Sidhu, R., Nauck, M., Jiang, X., Ory, D. S., Dorr, M., Vasan, R. S. and Schaffer, J. E. (2018) Ceramide remodeling and risk of cardiovascular events and mortality. J. Am. Heart Assoc. 7, e007931.   DOI
26 Portman, O. W. and Alexander, M. (1970) Metabolism of sphingolipids by normal and atherosclerotic aorta of squirrel monkeys. J. Lipid Res. 11, 23-30.   DOI
27 Preitner, F., Mody, N., Graham, T. E., Peroni, O. D. and Kahn, B. B. (2009) Long-term Fenretinide treatment prevents high-fat dietinduced obesity, insulin resistance, and hepatic steatosis. Am. J. Physiol. Endocrinol. Metab. 297, E1420-E1429.   DOI
28 Sasset, L., Zhang, Y., Dunn, T. M. and Di Lorenzo, A. (2016) Sphingolipid de novo biosynthesis: a rheostat of cardiovascular homeostasis. Trends Endocrinol. Metab. 27, 807-819.   DOI
29 Hla, T. and Kolesnick, R. (2014) C16:0-ceramide signals insulin resistance. Cell Metab. 20, 703-705.   DOI
30 Havulinna, A. S., Sysi-Aho, M., Hilvo, M., Kauhanen, D., Hurme, R., Ekroos, K., Salomaa, V. and Laaksonen, R. (2016) Circulating ceramides predict cardiovascular outcomes in the population-based FINRISK 2002 cohort. Arterioscler. Thromb. Vasc. Biol. 36, 2424-2430.   DOI
31 Bikman, B. T., Guan, Y., Shui, G., Siddique, M. M., Holland, W. L., Kim, J. Y., Fabrias, G., Wenk, M. R. and Summers, S. A. (2012) Fenretinide prevents lipid-induced insulin resistance by blocking ceramide biosynthesis. J. Biol. Chem. 287, 17426-17437.   DOI
32 Blom, T., Back, N., Mutka, A. L., Bittman, R., Li, Z., de Lera, A., Kovanen, P. T., Diczfalusy, U. and Ikonen, E. (2010) FTY720 stimulates 27-hydroxycholesterol production and confers atheroprotective effects in human primary macrophages. Circ. Res. 106, 720-729.   DOI
33 Breckenridge, W. C., Halloran, J. L., Kovacs, K. and Silver, M. D. (1975) Increase of gangliosides in atherosclerotic human aortas. Lipids 10, 256-259.   DOI
34 Campana, M., Bellini, L., Rouch, C., Rachdi, L., Coant, N., Butin, N., Bandet, C. L., Philippe, E., Meneyrol, K., Kassis, N., Dairou, J., Hajduch, E., Colsch, B., Magnan, C. and Le Stunff, H. (2018) Inhibition of central de novo ceramide synthesis restores insulin signaling in hypothalamus and enhances beta-cell function of obese Zucker rats. Mol. Metab. 8, 23-36.   DOI
35 Keul, P., Tolle, M., Lucke, S., von Wnuck Lipinski, K., Heusch, G., Schuchardt, M., van der Giet, M. and Levkau, B. (2007) The sphingosine-1-phosphate analogue FTY720 reduces atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 27, 607-613.   DOI
36 Dong, J., Liu, J., Lou, B., Li, Z., Ye, X., Wu, M. and Jiang, X. C. (2006) Adenovirus-mediated overexpression of sphingomyelin synthases 1 and 2 increases the atherogenic potential in mice. J. Lipid Res. 47, 1307-1314.   DOI
37 Park, T. S., Rosebury, W., Kindt, E. K., Kowala, M. C. and Panek, R. L. (2008) Serine palmitoyltransferase inhibitor myriocin induces the regression of atherosclerotic plaques in hyperlipidemic ApoEdeficient mice. Pharmacol. Res. 58, 45-51.   DOI
38 Poti, F., Gualtieri, F., Sacchi, S., Weissen-Plenz, G., Varga, G., Brodde, M., Weber, C., Simoni, M. and Nofer, J. R. (2013) KRP-203, sphingosine 1-phosphate receptor type 1 agonist, ameliorates atherosclerosis in LDL-R-/- mice. Arterioscler. Thromb. Vasc. Biol. 33, 1505-1512.   DOI
39 Schissel, S. L., Tweedie-Hardman, J., Rapp, J. H., Graham, G., Williams, K. J. and Tabas, I. (1996) Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J. Clin. Invest. 98, 1455-1464.   DOI
40 Sattler, K. J., Elbasan, S., Keul, P., Elter-Schulz, M., Bode, C., Graler, M. H., Brocker-Preuss, M., Budde, T., Erbel, R., Heusch, G. and Levkau, B. (2010) Sphingosine 1-phosphate levels in plasma and HDL are altered in coronary artery disease. Basic Res. Cardiol. 105, 821-832.   DOI
41 de Mello, V. D., Lankinen, M., Schwab, U., Kolehmainen, M., Lehto, S., Seppanen-Laakso, T., Oresic, M., Pulkkinen, L., Uusitupa, M. and Erkkila, A. T. (2009) Link between plasma ceramides, inflammation and insulin resistance: association with serum IL-6 concentration in patients with coronary heart disease. Diabetologia 52, 2612-2615.   DOI
42 Hojjati, M. R., Li, Z., Zhou, H., Tang, S., Huan, C., Ooi, E., Lu, S. and Jiang, X. C. (2005) Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. J. Biol. Chem. 280, 10284-10289.   DOI
43 Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., Abraham, J., Adair, T., Aggarwal, R., Ahn, S. Y., Alvarado, M., Anderson, H. R., Anderson, L. M., Andrews, K. G., Atkinson, C., Baddour, L. M., Barker-Collo, S., Bartels, D. H., Bell, M. L., Benjamin, E. J., Bennett, D., Bhalla, K., Bikbov, B., Bin Abdulhak, A., Birbeck, G., Blyth, F., Bolliger, I., Boufous, S., Bucello, C., Burch, M., Burney, P., Carapetis, J., Chen, H., Chou, D., Chugh, S. S., Coffeng, L. E., Colan, S. D., Colquhoun, S., Colson, K. E., Condon, J., Connor, M. D., Cooper, L. T., Corriere, M., Cortinovis, M., de Vaccaro, K. C., Couser, W., Cowie, B. C., Criqui, M. H., Cross, M., Dabhadkar, K. C., Dahodwala, N., De Leo, D., Degenhardt, L., Delossantos, A., Denenberg, J., Des Jarlais, D. C., Dharmaratne, S. D., Dorsey, E. R., Driscoll, T., Duber, H., Ebel, B., Erwin, P. J., Espindola, P., Ezzati, M., Feigin, V., Flaxman, A. D., Forouzanfar, M. H., Fowkes, F. G., Franklin, R., Fransen, M., Freeman, M. K., Gabriel, S. E., Gakidou, E., Gaspari, F., Gillum, R. F., Gonzalez-Medina, D., Halasa, Y. A., Haring, D., Harrison, J. E., Havmoeller, R., Hay, R. J., Hoen, B., Hotez, P. J., Hoy, D., Jacobsen, K. H., James, S. L., Jasrasaria, R., Jayaraman, S., Johns, N., Karthikeyan, G., Kassebaum, N., Keren, A., Khoo, J. P., Knowlton, L. M., Kobusingye, O., Koranteng, A., Krishnamurthi, R., Lipnick, M., Lipshultz, S. E., Ohno, S. L., Mabweijano, J., MacIntyre, M. F., Mallinger, L., March, L., Marks, G. B., Marks, R., Matsumori, A., Matzopoulos, R., Mayosi, B. M., McAnulty, J. H., McDermott, M. M., McGrath, J., Mensah, G. A., Merriman, T. R., Michaud, C., Miller, M., Miller, T. R., Mock, C., Mocumbi, A. O., Mokdad, A. A., Moran, A., Mulholland, K., Nair, M. N., Naldi, L., Narayan, K. M., Nasseri, K., Norman, P., O'Donnell, M., Omer, S. B., Ortblad, K., Osborne, R., Ozgediz, D., Pahari, B., Pandian, J. D., Rivero, A. P., Padilla, R. P., Perez-Ruiz, F., Perico, N., Phillips, D., Pierce, K., Pope, C. A., 3rd, Porrini, E., Pourmalek, F., Raju, M., Ranganathan, D., Rehm, J. T., Rein, D. B., Remuzzi, G., Rivara, F. P., Roberts, T., De Leon, F. R., Rosenfeld, L. C., Rushton, L., Sacco, R. L., Salomon, J. A., Sampson, U., Sanman, E., Schwebel, D. C., Segui-Gomez, M., Shepard, D. S., Singh, D., Singleton, J., Sliwa, K., Smith, E., Steer, A., Taylor, J. A., Thomas, B., Tleyjeh, I. M., Towbin, J. A., Truelsen, T., Undurraga, E. A., Venketasubramanian, N., Vijayakumar, L., Vos, T., Wagner, G. R., Wang, M., Wang, W., Watt, K., Weinstock, M. A., Weintraub, R., Wilkinson, J. D., Woolf, A. D., Wulf, S., Yeh, P. H., Yip, P., Zabetian, A., Zheng, Z. J., Lopez, A. D., Murray, C. J., AlMazroa, M. A. and Memish, Z. A. (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2095-2128.   DOI
44 Sattler, K., Lehmann, I., Graler, M., Brocker-Preuss, M., Erbel, R., Heusch, G. and Levkau, B. (2014) HDL-bound sphingosine 1-phosphate (S1P) predicts the severity of coronary artery atherosclerosis. Cell. Physiol. Biochem. 34, 172-184.   DOI
45 Wang, G., Kim, R. Y., Imhof, I., Honbo, N., Luk, F. S., Li, K., Kumar, N., Zhu, B. Q., Eberle, D., Ching, D., Karliner, J. S. and Raffai, R. L. (2014) The immunosuppressant FTY720 prolongs survival in a mouse model of diet-induced coronary atherosclerosis and myocardial infarction. J. Cardiovasc. Pharmacol. 63, 132-143.   DOI
46 Laaksonen, R., Ekroos, K., Sysi-Aho, M., Hilvo, M., Vihervaara, T., Kauhanen, D., Suoniemi, M., Hurme, R., Marz, W., Scharnagl, H., Stojakovic, T., Vlachopoulou, E., Lokki, M. L., Nieminen, M. S., Klingenberg, R., Matter, C. M., Hornemann, T., Juni, P., Rodondi, N., Raber, L., Windecker, S., Gencer, B., Pedersen, E. R., Tell, G. S., Nygard, O., Mach, F., Sinisalo, J. and Luscher, T. F. (2016) Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur. Heart J. 37, 1967-1976.   DOI
47 Liu, J., Huan, C., Chakraborty, M., Zhang, H., Lu, D., Kuo, M. S., Cao, G. and Jiang, X. C. (2009) Macrophage sphingomyelin synthase 2 deficiency decreases atherosclerosis in mice. Circ. Res. 105, 295-303.   DOI
48 Holland, W. L., Brozinick, J. T., Wang, L. P., Hawkins, E. D., Sargent, K. M., Liu, Y., Narra, K., Hoehn, K. L., Knotts, T. A., Siesky, A., Nelson, D. H., Karathanasis, S. K., Fontenot, G. K., Birnbaum, M. J. and Summers, S. A. (2007) Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 5, 167-179.   DOI
49 Chavez, J. A. and Summers, S. A. (2012) A ceramide-centric view of insulin resistance. Cell Metab. 15, 585-594.   DOI
50 Cheng, J. M., Suoniemi, M., Kardys, I., Vihervaara, T., de Boer, S. P., Akkerhuis, K. M., Sysi-Aho, M., Ekroos, K., Garcia-Garcia, H. M., Oemrawsingh, R. M., Regar, E., Koenig, W., Serruys, P. W., van Geuns, R. J., Boersma, E. and Laaksonen, R. (2015a) Plasma concentrations of molecular lipid species in relation to coronary plaque characteristics and cardiovascular outcome: results of the ATHEROREMO-IVUS study. Atherosclerosis 243, 560-566.   DOI
51 Deutschman, D. H., Carstens, J. S., Klepper, R. L., Smith, W. S., Page, M. T., Young, T. R., Gleason, L. A., Nakajima, N. and Sabbadini, R. A. (2003) Predicting obstructive coronary artery disease with serum sphingosine-1-phosphate. Am. Heart J. 146, 62-68.   DOI
52 Lemaitre, R. N., Yu, C., Hoofnagle, A., Hari, N., Jensen, P. N., Fretts, A. M., Umans, J. G., Howard, B. V., Sitlani, C. M., Siscovick, D. S., King, I. B., Sotoodehnia, N. and McKnight, B. (2018) Circulating sphingolipids, insulin, HOMA-IR, and HOMA-B: the Strong Heart Family Study. Diabetes 67, 1663-1672.   DOI
53 Knapp, M., Lisowska, A., Zabielski, P., Musial, W. and Baranowski, M. (2013) Sustained decrease in plasma sphingosine-1-phosphate concentration and its accumulation in blood cells in acute myocardial infarction. Prostaglandins Other Lipid Mediat. 106, 53-61.   DOI
54 Kraveka, J. M., Li, L., Szulc, Z. M., Bielawski, J., Ogretmen, B., Hannun, Y. A., Obeid, L. M. and Bielawska, A. (2007) Involvement of dihydroceramide desaturase in cell cycle progression in human neuroblastoma cells. J. Biol. Chem. 282, 16718-16728.   DOI
55 Pan, W., Yu, J., Shi, R., Yan, L., Yang, T., Li, Y., Zhang, Z., Yu, G., Bai, Y., Schuchman, E. H., He, X. and Zhang, G. (2014) Elevation of ceramide and activation of secretory acid sphingomyelinase in patients with acute coronary syndromes. Coron. Artery Dis. 25, 230-235.   DOI
56 Sigruener, A., Kleber, M. E., Heimerl, S., Liebisch, G., Schmitz, G. and Maerz, W. (2014) Glycerophospholipid and sphingolipid species and mortality: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. PLoS ONE 9, e85724.   DOI
57 Park, J. W., Park, W. J. and Futerman, A. H. (2014) Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim. Biophys. Acta 1841, 671-681.   DOI
58 Park, T. S., Panek, R. L., Rekhter, M. D., Mueller, S. B., Rosebury, W. S., Robertson, A., Hanselman, J. C., Kindt, E., Homan, R. and Karathanasis, S. K. (2006) Modulation of lipoprotein metabolism by inhibition of sphingomyelin synthesis in ApoE knockout mice. Atherosclerosis 189, 264-272.   DOI
59 Pewzner-Jung, Y., Ben-Dor, S. and Futerman, A. H. (2006) When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: insights into the regulation of ceramide synthesis. J. Biol. Chem. 281, 25001-25005.   DOI
60 Polzin, A., Piayda, K., Keul, P., Dannenberg, L., Mohring, A., Graler, M., Zeus, T., Kelm, M. and Levkau, B. (2017) Plasma sphingosine1-phosphate concentrations are associated with systolic heart failure in patients with ischemic heart disease. J. Mol. Cell. Cardiol. 110, 35-37.   DOI
61 Poti, F., Ceglarek, U., Burkhardt, R., Simoni, M. and Nofer, J. R. (2015) SKI-II--a sphingosine kinase 1 inhibitor--exacerbates atherosclerosis in low-density lipoprotein receptor-deficient (LDL-R-/-) mice on high cholesterol diet. Atherosclerosis 240, 212-215.   DOI
62 Prokazova, N. V., Mikhailenko, I. A. and Bergelson, L. D. (1991) Ganglioside GM3 stimulates the uptake and processing of low density lipoproteins by macrophages. Biochem. Biophys. Res. Commun. 177, 582-587.   DOI
63 Takahashi, C., Kurano, M., Nishikawa, M., Kano, K., Dohi, T., Miyauchi, K., Daida, H., Shimizu, T., Aoki, J. and Yatomi, Y. (2017) Vehicle-dependent Effects of Sphingosine 1-phosphate on Plasminogen Activator Inhibitor-1 Expression. J. Atheroscler. Thromb. 24, 954-969.   DOI
64 Skoura, A., Michaud, J., Im, D. S., Thangada, S., Xiong, Y., Smith, J. D. and Hla, T. (2011) Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 31, 81-85.   DOI
65 Smith, E. B. (1960) Intimal and medial lipids in human aortas. Lancet 1, 799-803.   DOI
66 Summers, S. A. (2018) Could ceramides become the new cholesterol? Cell Metab. 27, 276-280.   DOI
67 Tarasov, K., Ekroos, K., Suoniemi, M., Kauhanen, D., Sylvanne, T., Hurme, R., Gouni-Berthold, I., Berthold, H. K., Kleber, M. E., Laaksonen, R. and Marz, W. (2014) Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency. J. Clin. Endocrinol. Metab. 99, E45-E52.   DOI
68 Zheng, W., Kollmeyer, J., Symolon, H., Momin, A., Munter, E., Wang, E., Kelly, S., Allegood, J. C., Liu, Y., Peng, Q., Ramaraju, H., Sullards, M. C., Cabot, M. and Merrill, A. H., Jr. (2006) Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim. Biophys. Acta 1758, 1864-1884.   DOI
69 Yu, J., Pan, W., Shi, R., Yang, T., Li, Y., Yu, G., Bai, Y., Schuchman, E. H., He, X. and Zhang, G. (2015) Ceramide is upregulated and associated with mortality in patients with chronic heart failure. Can. J. Cardiol. 31, 357-363.   DOI
70 Zhao, L., Spassieva, S. D., Jucius, T. J., Shultz, L. D., Shick, H. E., Macklin, W. B., Hannun, Y. A., Obeid, L. M. and Ackerman, S. L. (2011) A deficiency of ceramide biosynthesis causes cerebellar purkinje cell neurodegeneration and lipofuscin accumulation. PLoS Genet. 7, e1002063.   DOI
71 Lallemand, T., Rouahi, M., Swiader, A., Grazide, M. H., Geoffre, N., Alayrac, P., Recazens, E., Coste, A., Salvayre, R., Negre-Salvayre, A. and Auge, N. (2018) nSMase2 (type 2-neutral sphingomyelinase) deficiency or inhibition by GW4869 reduces inflammation and atherosclerosis in Apoe(-/-) mice. Arterioscler. Thromb. Vasc. Biol. 38, 1479-1492.   DOI
72 Bietrix, F., Lombardo, E., van Roomen, C. P., Ottenhoff, R., Vos, M., Rensen, P. C., Verhoeven, A. J., Aerts, J. M. and Groen, A. K. (2010) Inhibition of glycosphingolipid synthesis induces a profound reduction of plasma cholesterol and inhibits atherosclerosis development in APOE*3 Leiden and low-density lipoprotein receptor-/- mice. Arterioscler. Thromb. Vasc. Biol. 30, 931-937.   DOI
73 Chatterjee, S., Bedja, D., Mishra, S., Amuzie, C., Avolio, A., Kass, D. A., Berkowitz, D. and Renehan, M. (2014) Inhibition of glycosphingolipid synthesis ameliorates atherosclerosis and arterial stiffness in apolipoprotein E-/- mice and rabbits fed a high-fat and -cholesterol diet. Circulation 129, 2403-2413.   DOI
74 Chavez, J. A., Knotts, T. A., Wang, L. P., Li, G., Dobrowsky, R. T., Florant, G. L. and Summers, S. A. (2003) A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J. Biol. Chem. 278, 10297-10303.   DOI
75 Zhao, Y. R., Dong, J. B., Li, Y. and Wu, M. P. (2012) Sphingomyelin synthase 2 over-expression induces expression of aortic inflammatory biomarkers and decreases circulating EPCs in ApoE KO mice. Life Sci. 90, 867-873.   DOI
76 Xia, J. Y., Holland, W. L., Kusminski, C. M., Sun, K., Sharma, A. X., Pearson, M. J., Sifuentes, A. J., McDonald, J. G., Gordillo, R. and Scherer, P. E. (2015) Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis. Cell Metab. 22, 266-278.   DOI
77 Kurano, M. and Yatomi, Y. (2018) Sphingosine 1-phosphate and atherosclerosis. J. Atheroscler. Thromb. 25, 16-26.   DOI
78 Kurek, K., Piotrowska, D. M., Wiesiolek-Kurek, P., Lukaszuk, B., Chabowski, A., Gorski, J. and Zendzian-Piotrowska, M. (2014) Inhibition of ceramide de novo synthesis reduces liver lipid accumulation in rats with nonalcoholic fatty liver disease. Liver Int. 34, 1074-1083.   DOI
79 Marathe, S., Kuriakose, G., Williams, K. J. and Tabas, I. (1999) Sphingomyelinase, an enzyme implicated in atherogenesis, is present in atherosclerotic lesions and binds to specific components of the subendothelial extracellular matrix. Arterioscler. Thromb. Vasc. Biol. 19, 2648-2658.   DOI
80 Meikle, P. J., Wong, G., Tsorotes, D., Barlow, C. K., Weir, J. M., Christopher, M. J., MacIntosh, G. L., Goudey, B., Stern, L., Kowalczyk, A., Haviv, I., White, A. J., Dart, A. M., Duffy, S. J., Jennings, G. L. and Kingwell, B. A. (2011) Plasma lipidomic analysis of stable and unstable coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 31, 2723-2732.   DOI
81 Mody, N. and McIlroy, G. D. (2014) The mechanisms of Fenretinidemediated anti-cancer activity and prevention of obesity and type-2 diabetes. Biochem. Pharmacol. 91, 277-286.   DOI
82 Gracheva, E. V., Samovilova, N. N., Golovanova, N. K., Kashirina, S. V., Shevelev, A., Rybalkin, I., Gurskaya, T., Vlasik, T. N., Andreeva, E. R. and Prokazova, N. V. (2009) Enhancing of GM3 synthase expression during differentiation of human blood monocytes into macrophages as in vitro model of GM3 accumulation in atherosclerotic lesion. Mol. Cell. Biochem. 330, 121-129.   DOI
83 Jennemann, R., Rabionet, M., Gorgas, K., Epstein, S., Dalpke, A., Rothermel, U., Bayerle, A., van der Hoeven, F., Imgrund, S., Kirsch, J., Nickel, W., Willecke, K., Riezman, H., Grone, H. J. and Sandhoff, R. (2012) Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum. Mol. Genet. 21, 586-608.   DOI
84 Holland, W. L., Xia, J. Y., Johnson, J. A., Sun, K., Pearson, M. J., Sharma, A. X., Quittner-Strom, E., Tippetts, T. S., Gordillo, R. and Scherer, P. E. (2017) Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis. Mol. Metab. 6, 267-275.   DOI
85 Hornemann, T., Richard, S., Rutti, M. F., Wei, Y. and von Eckardstein, A. (2006) Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase. J. Biol. Chem. 281, 37275-37281.   DOI
86 Imgrund, S., Hartmann, D., Farwanah, H., Eckhardt, M., Sandhoff, R., Degen, J., Gieselmann, V., Sandhoff, K. and Willecke, K. (2009) Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas. J. Biol. Chem. 284, 33549-33560.   DOI
87 Johansson, H., Gandini, S., Guerrieri-Gonzaga, A., Iodice, S., Ruscica, M., Bonanni, B., Gulisano, M., Magni, P., Formelli, F. and Decensi, A. (2008) Effect of fenretinide and low-dose tamoxifen on insulin sensitivity in premenopausal women at high risk for breast cancer. Cancer. Res. 68, 9512-9518.   DOI
88 Murray, C. J. and Lopez, A. D. (1997) Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 349, 1269-1276.   DOI
89 Theilmeier, G., Schmidt, C., Herrmann, J., Keul, P., Schafers, M., Herrgott, I., Mersmann, J., Larmann, J., Hermann, S., Stypmann, J., Schober, O., Hildebrand, R., Schulz, R., Heusch, G., Haude, M., von Wnuck Lipinski, K., Herzog, C., Schmitz, M., Erbel, R., Chun, J. and Levkau, B. (2006) High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 114, 1403-1409.   DOI
90 Walters, M. J. and Wrenn, S. P. (2008) Effect of sphingomyelinase-mediated generation of ceramide on aggregation of low-density lipoprotein. Langmuir 24, 9642-9647.   DOI
91 Omae, F., Miyazaki, M., Enomoto, A., Suzuki, M., Suzuki, Y. and Suzuki, A. (2004) DES2 protein is responsible for phytoceramide biosynthesis in the mouse small intestine. Biochem. J. 379, 687-695.   DOI
92 Park, T. S., Panek, R. L., Mueller, S. B., Hanselman, J. C., Rosebury, W. S., Robertson, A. W., Kindt, E. K., Homan, R., Karathanasis, S. K. and Rekhter, M. D. (2004) Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 110, 3465-3471.   DOI
93 Ebel, P., Imgrund, S., Vom Dorp, K., Hofmann, K., Maier, H., Drake, H., Degen, J., Dormann, P., Eckhardt, M., Franz, T. and Willecke, K. (2014) Ceramide synthase 4 deficiency in mice causes lipid alterations in sebum and results in alopecia. Biochem. J. 461, 147-158.   DOI
94 Wang, D. D., Toledo, E., Hruby, A., Rosner, B. A., Willett, W. C., Sun, Q., Razquin, C., Zheng, Y., Ruiz-Canela, M., Guasch-Ferre, M., Corella, D., Gomez-Gracia, E., Fiol, M., Estruch, R., Ros, E., Lapetra, J., Fito, M., Aros, F., Serra-Majem, L., Lee, C. H., Clish, C. B., Liang, L., Salas-Salvado, J., Martinez-Gonzalez, M. A. and Hu, F. B. (2017) Plasma ceramides, mediterranean diet, and incident cardiovascular disease in the PREDIMED Trial (Prevencion con Dieta Mediterranea). Circulation 135, 2028-2040.   DOI
95 Wang, X., Dong, J., Zhao, Y., Li, Y. and Wu, M. (2011) Adenovirus-mediated sphingomyelin synthase 2 increases atherosclerotic lesions in ApoE KO mice. Lipids Health Dis. 10, 7.   DOI
96 Devlin, C. M., Leventhal, A. R., Kuriakose, G., Schuchman, E. H., Williams, K. J. and Tabas, I. (2008) Acid sphingomyelinase promotes lipoprotein retention within early atheromata and accelerates lesion progression. Arterioscler. Thromb. Vasc. Biol. 28, 1723-1730.   DOI
97 Ebel, P., Vom Dorp, K., Petrasch-Parwez, E., Zlomuzica, A., Kinugawa, K., Mariani, J., Minich, D., Ginkel, C., Welcker, J., Degen, J., Eckhardt, M., Dere, E., Dormann, P. and Willecke, K. (2013) Inactivation of ceramide synthase 6 in mice results in an altered sphingolipid metabolism and behavioral abnormalities. J. Biol. Chem. 288, 21433-21447.   DOI
98 Gable, K., Slife, H., Bacikova, D., Monaghan, E. and Dunn, T. M. (2000) Tsc3p is an 80-amino acid protein associated with serine palmitoyltransferase and required for optimal enzyme activity. J. Biol. Chem. 275, 7597-7603.   DOI
99 Li, M., Markham, J. E. and Wang, X. (2014) Overexpression of patatin-related phospholipase AIIIbeta altered the content and composition of sphingolipids in Arabidopsis. Front. Plant Sci. 5, 553.
100 Dekker, M. J., Baker, C., Naples, M., Samsoondar, J., Zhang, R., Qiu, W., Sacco, J. and Adeli, K. (2013) Inhibition of sphingolipid synthesis improves dyslipidemia in the diet-induced hamster model of insulin resistance: evidence for the role of sphingosine and sphinganine in hepatic VLDL-apoB100 overproduction. Atherosclerosis 228, 98-109.   DOI
101 Li, Z., Fan, Y., Liu, J., Li, Y., Huan, C., Bui, H. H., Kuo, M. S., Park, T. S., Cao, G. and Jiang, X. C. (2012) Impact of sphingomyelin synthase 1 deficiency on sphingolipid metabolism and atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 32, 1577-1584.   DOI
102 Liu, Y., Wada, R., Yamashita, T., Mi, Y., Deng, C. X., Hobson, J. P., Rosenfeldt, H. M., Nava, V. E., Chae, S. S., Lee, M. J., Liu, C. H., Hla, T., Spiegel, S. and Proia, R. L. (2000) Edg-1, the G proteincoupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest. 106, 951-961.   DOI
103 Manicke, N. E., Nefliu, M., Wu, C., Woods, J. W., Reiser, V., Hendrickson, R. C. and Cooks, R. G. (2009) Imaging of lipids in atheroma by desorption electrospray ionization mass spectrometry. Anal. Chem. 81, 8702-8707.   DOI
104 Garner, B., Priestman, D. A., Stocker, R., Harvey, D. J., Butters, T. D. and Platt, F. M. (2002) Increased glycosphingolipid levels in serum and aortae of apolipoprotein E gene knockout mice. J. Lipid Res. 43, 205-214.   DOI
105 Gault, C. R., Obeid, L. M. and Hannun, Y. A. (2010) An overview of sphingolipid metabolism: from synthesis to breakdown. Adv. Exp. Med. Biol. 688, 1-23.   DOI
106 Gong, N., Wei, H., Chowdhury, S. H. and Chatterjee, S. (2004) Lactosylceramide recruits PKCalpha/epsilon and phospholipase A2 to stimulate PECAM-1 expression in human monocytes and adhesion to endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 101, 6490-6495.   DOI
107 Lopez, X., Goldfine, A. B., Holland, W. L., Gordillo, R. and Scherer, P. E. (2013) Plasma ceramides are elevated in female children and adolescents with type 2 diabetes. J. Pediatr. Endocrinol. Metab. 26, 995-998.   DOI
108 Maceyka, M. and Spiegel, S. (2014) Sphingolipid metabolites in inflammatory disease. Nature 510, 58-67.   DOI
109 Meeusen, J. W., Donato, L. J., Bryant, S. C., Baudhuin, L. M., Berger, P. B. and Jaffe, A. S. (2018) Plasma ceramides. Arterioscler. Thromb. Vasc. Biol. 38, 1933-1939.   DOI
110 Merrill, A. H., Jr. (2002) De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J. Biol. Chem. 277, 25843-25846.   DOI
111 Michaud, J., Im, D. S. and Hla, T. (2010) Inhibitory role of sphingosine 1-phosphate receptor 2 in macrophage recruitment during inflammation. J. Immunol. 184, 1475-1483.   DOI
112 Reibe-Pal, S. and Febbraio, M. A. (2017) Adiponectin serenades ceramidase to improve metabolism. Mol. Metab. 6, 233-235.   DOI
113 Keul, P., Lucke, S., von Wnuck Lipinski, K., Bode, C., Graler, M., Heusch, G. and Levkau, B. (2011) Sphingosine-1-phosphate receptor 3 promotes recruitment of monocyte/macrophages in inflammation and atherosclerosis. Circ. Res. 108, 314-323.   DOI
114 Jiao, G. Q., Yuan, Z. X., Xue, Y. S., Yang, C. J., Lu, C. B., Lu, Z. Q. and Xiao, M. D. (2007) A prospective evaluation of apolipoprotein M gene T-778C polymorphism in relation to coronary artery disease in Han Chinese. Clin. Biochem. 40, 1108-1112.   DOI
115 Jin, J., Zhang, X., Lu, Z., Perry, D. M., Li, Y., Russo, S. B., Cowart, L. A., Hannun, Y. A. and Huang, Y. (2013) Acid sphingomyelinase plays a key role in palmitic acid-amplified inflammatory signaling triggered by lipopolysaccharide at low concentrations in macrophages. Am. J. Physiol. Endocrinol. Metab. 305, E853-E867.
116 Kasumov, T., Li, L., Li, M., Gulshan, K., Kirwan, J. P., Liu, X., Previs, S., Willard, B., Smith, J. D. and McCullough, A. (2015) Ceramide as a mediator of non-alcoholic Fatty liver disease and associated atherosclerosis. PLoS ONE 10, e0126910.   DOI
117 Wolfrum, C., Poy, M. N. and Stoffel, M. (2005) Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nat. Med. 11, 418-422.   DOI
118 Fabbri, E., Yang, A., Simonsick, E. M., Chia, C. W., Zoli, M., Haughey, N. J., Mielke, M. M., Ferrucci, L. and Coen, P. M. (2016) Circulating ceramides are inversely associated with cardiorespiratory fitness in participants aged 54-96 years from the Baltimore Longitudinal Study of Aging. Aging Cell 15, 825-831.   DOI
119 Galadari, S., Rahman, A., Pallichankandy, S. and Thayyullathil, F. (2015) Tumor suppressive functions of ceramide: evidence and mechanisms. Apoptosis 20, 689-711.   DOI
120 Wigger, L., Cruciani-Guglielmacci, C., Nicolas, A., Denom, J., Fernandez, N., Fumeron, F., Marques-Vidal, P., Ktorza, A., Kramer, W., Schulte, A., Le Stunff, H., Liechti, R., Xenarios, I., Vollenweider, P., Waeber, G., Uphues, I., Roussel, R., Magnan, C., Ibberson, M. and Thorens, B. (2017) Plasma dihydroceramides are diabetes susceptibility biomarker candidates in mice and humans. Cell Rep. 18, 2269-2279.   DOI
121 Xu, W. W., Zhang, Y., Tang, Y. B., Xu, Y. L., Zhu, H. Z., Ferro, A., Ji, Y., Chen, Q. and Fan, L. M. (2008) A genetic variant of apolipoprotein M increases susceptibility to coronary artery disease in a Chinese population. Clin. Exp. Pharmacol. Physiol. 35, 546-551.   DOI
122 Bhunia, A. K., Han, H., Snowden, A. and Chatterjee, S. (1997) Redox-regulated signaling by lactosylceramide in the proliferation of human aortic smooth muscle cells. J. Biol. Chem. 272, 15642-15649.   DOI
123 Bobryshev, Y. V., Lord, R. S., Golovanova, N. K., Gracheva, E. V., Zvezdina, N. D., Sadovskaya, V. L. and Prokazova, N. V. (1997) Incorporation and localisation of ganglioside GM3 in human intimal atherosclerotic lesions. Biochim. Biophys. Acta 1361, 287-294.   DOI
124 Glaros, E. N., Kim, W. S., Wu, B. J., Suarna, C., Quinn, C. M., Rye, K. A., Stocker, R., Jessup, W. and Garner, B. (2007) Inhibition of atherosclerosis by the serine palmitoyl transferase inhibitor myriocin is associated with reduced plasma glycosphingolipid concentration. Biochem. Pharmacol. 73, 1340-1346.   DOI
125 Hailemariam, T. K., Huan, C., Liu, J., Li, Z., Roman, C., Kalbfeisch, M., Bui, H. H., Peake, D. A., Kuo, M. S., Cao, G., Wadgaonkar, R. and Jiang, X. C. (2008) Sphingomyelin synthase 2 deficiency attenuates NFkappaB activation. Arterioscler. Thromb. Vasc. Biol. 28, 1519-1526.   DOI
126 Maula, T., Al Sazzad, M. A. and Slotte, J. P. (2015) Influence of hydroxylation, chain length, and chain unsaturation on bilayer properties of ceramides. Biophys. J. 109, 1639-1651.   DOI
127 Bergman, B. C., Brozinick, J. T., Strauss, A., Bacon, S., Kerege, A., Bui, H. H., Sanders, P., Siddall, P., Kuo, M. S. and Perreault, L. (2015) Serum sphingolipids: relationships to insulin sensitivity and changes with exercise in humans. Am. J. Physiol. Endocrinol. Metab. 309, E398-E408.   DOI
128 Fettel, J., Kuhn, B., Guillen, N. A., Surun, D., Peters, M., Bauer, R., Angioni, C., Geisslinger, G., Schnutgen, F., Meyer Zu Heringdorf, D., Werz, O., Meybohm, P., Zacharowski, K., Steinhilber, D., Roos, J. and Maier, T. J. (2019) Sphingosine-1-phosphate (S1P) induces potent anti-inflammatory effects in vitro and in vivo by S1P receptor 4-mediated suppression of 5-lipoxygenase activity. FASEB J. 33, 1711-1726.   DOI
129 Hla, T. and Dannenberg, A. J. (2012) Sphingolipid signaling in metabolic disorders. Cell Metab. 16, 420-434.   DOI
130 Zabielski, P., Daniluk, J., Hady, H. R., Markowski, A. R., Imierska, M., Gorski, J. and Blachnio-Zabielska, A. U. (2019) The effect of highfat diet and inhibition of ceramide production on insulin action in liver. J. Cell. Physiol. 234, 1851-1861.   DOI
131 Chatterjee, S. B., Dey, S., Shi, W. Y., Thomas, K. and Hutchins, G. M. (1997) Accumulation of glycosphingolipids in human atherosclerotic plaque and unaffected aorta tissues. Glycobiology 7, 57-65.   DOI
132 Chaurasia, B., Tippetts, T. S., Mayoral Monibas, R., Liu, J., Li, Y., Wang, L., Wilkerson, J. L., Sweeney, C. R., Pereira, R. F., Sumida, D. H., Maschek, J. A., Cox, J. E., Kaddai, V., Lancaster, G. I., Siddique, M. M., Poss, A., Pearson, M., Satapati, S., Zhou, H., McLaren, D. G., Previs, S. F., Chen, Y., Qian, Y., Petrov, A., Wu, M., Shen, X., Yao, J., Nunes, C. N., Howard, A. D., Wang, L., Erion, M. D., Rutter, J., Holland, W. L., Kelley, D. E. and Summers, S. A. (2019) Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science 365, 386-392.   DOI
133 Zhang, Q. J., Holland, W. L., Wilson, L., Tanner, J. M., Kearns, D., Cahoon, J. M., Pettey, D., Losee, J., Duncan, B., Gale, D., Kowalski, C. A., Deeter, N., Nichols, A., Deesing, M., Arrant, C., Ruan, T., Boehme, C., McCamey, D. R., Rou, J., Ambal, K., Narra, K. K., Summers, S. A., Abel, E. D. and Symons, J. D. (2012) Ceramide mediates vascular dysfunction in diet-induced obesity by PP2Amediated dephosphorylation of the eNOS-Akt complex. Diabetes 61, 1848-1859.   DOI
134 Zhao, M., Pan, W., Shi, R. Z., Bai, Y. P., You, B. Y., Zhang, K., Fu, Q. M., Schuchman, E. H., He, X. X. and Zhang, G. G. (2016) Acid sphingomyelinase mediates oxidized-LDL induced apoptosis in macrophage via endoplasmic reticulum stress. J. Atheroscler. Thromb. 23, 1111-1125.   DOI