Browse > Article
http://dx.doi.org/10.4062/biomolther.2020.195

3'-O-Acetyl-24-Epi-7,8-Didehydrocimigenol-3-O-β-D-Xylopryranoside Decreases Amyloid Beta Production in Amyloid Precursor Protein-Transfected HeLa Cells  

Lee, Sang-Bin (Department of Integrative Biological Sciences and Industry, Sejong University)
Park, Ansun (Natural Product Research Center, Korea Institute of Science and Technology)
Ma, Chi Thanh (Department of Pharmacognosy, University of Medicine and Pharmacy at Ho Chi Minh City)
Kim, Young Ho (College of Pharmacy, Chungnam National University)
Yang, Hyun Ok (Department of Integrative Biological Sciences and Industry, Sejong University)
Publication Information
Biomolecules & Therapeutics / v.29, no.3, 2021 , pp. 290-294 More about this Journal
Abstract
Extracellular beta amyloid (Aβ) plaques are the neuropathological hallmarks of Alzheimer's disease (AD). Accordingly, reducing Aβ levels is considered a promising strategy for AD prevention. 3'-O-acetyl-24-epi-7,8-didehydrocimigenol-3-O-β-D-xylopryranoside significantly decreased the Aβ production and this effect was accompanied with reduced sAPPβ production known as a soluble ectodomain APP fragment through β-secretases in HeLa cells overexpressing amyloid precursor proteins (APPs). This compound also increased the level of sAPPα, which is a proteolytic fragment of APP by α-secretases. In addition, 3'-O-acetyl-24-epi-7,8-didehydrocimigenol-3-O-β-D-xylopryranoside decreased the protein level of β-secretases, but the protein levels of A disintegrin and metalloproteinase (ADAM) family, especially ADAM10 and ADAM17, are increased. Thus, 3'-O-acetyl-24-epi-7,8-didehydrocimigenol-3-O-β-D-xylopryranoside could be useful in the development of AD treatment in the aspect of amyloid pathology.
Keywords
Alzheimer's disease; Anti-amyloidogenic effect; Secretases;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Thao, N. P., Kim, J. H., Thuy Luyen, B. T., Dat, N. T. and Kim, Y. H. (2017a) In silico investigation of cycloartane triterpene derivatives from Cimicifuga dahurica (Turcz.) Maxim. roots for the development of potent soluble epoxide hydrolase inhibitors. Int. J. Biol. Macromol. 98, 526-534.   DOI
2 Thao, N. P., Lee, Y. S., Luyen, B. T. T., Oanh, H. V., Ali, I., Arooj, M., Koh, Y. S., Yang, S. Y. and Kim, Y. H. (2018) Chemicals from Cimicifuga dahurica and their inhibitory effects on pro-inflammatory cytokine production by LPS-stimulated bone marrow-derived dendritic cells. Nat. Prod. Sci. 24, 194-198.   DOI
3 Thao, N. P., Luyen, B. T., Lee, J. S., Kim, J. H. and Kim, Y. H. (2017b) Soluble epoxide hydrolase inhibitors of indolinone alkaloids and phenolic derivatives from Cimicifuga dahurica (Turcz.) Maxim. Bioorg. Med. Chem. Lett. 27, 1874-1879.   DOI
4 Thao, N. P., Luyen, B. T. T., Lee, J. S., Kim, J. H., Dat, N. T. and Kim, Y. H. (2017c) Inhibition potential of cycloartane-type glycosides from the roots of cimicifuga dahurica against soluble epoxide hydrolase. J. Nat. Prod. 80, 1867-1875.   DOI
5 Tian, Z., Si, J., Chang, Q., Zhou, L., Chen, S., Xiao, P. and Wu, E. (2007) Antitumor activity and mechanisms of action of total glycosides from aerial part of Cimicifuga dahurica targeted against hepatoma. BMC Cancer 7, 237.   DOI
6 Vargas, L. M., Cerpa, W., Munoz, F. J., Zanlungo, S. and Alvarez, A. R. (2018) Amyloid-beta oligomers synaptotoxicity: the emerging role of EphA4/c-Abl signaling in Alzheimer's disease. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 1148-1159.   DOI
7 Agostinho, P., Cunha, R. A. and Oliveira, C. (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer's disease. Curr. Pharm. Des. 16, 2766-2778.   DOI
8 Chen, X., Xu, B., Nie, L., He, K., Zhou, L., Huang, X., Spencer, P., Yang, X. and Liu, J. (2019) Flavanol-rich lychee fruit extract substantially reduces progressive cognitive and molecular deficits in a triple-transgenic animal model of Alzheimer disease. Nutr. Neurosci. doi: 10.1080/1028415X.2019.1673527 [Online ahead of print].   DOI
9 Gu, M. Y., Chun, Y. S., Zhao, D., Ryu, S. Y. and Yang, H. O. (2018) Glycyrrhiza uralensis and semilicoisoflavone B reduce Aβ secretion by increasing PPARγ expression and inhibiting STAT3 phosphorylation to inhibit BACE1 expression. Mol. Nutr. Food. Res. 62, e1700633.
10 Hardy, J. and Orr, H. (2006) The genetics of neurodegenerative diseases. J. Neurochem. 97, 1690-1699.   DOI
11 Karran, E. and De Strooper, B. (2016) The amyloid cascade hypothesis: are we poised for success or failure? J. Neurochem. 139 Suppl 2, 237-252.   DOI
12 Kim, J., Park, Y., Chun, Y. S., Cha, J. W., Kwon, H. C., Oh, M. S., Chung, S. and Yang, H. O. (2015a) Effect of lycoris chejuensis and its active components on experimental models of Alzheimer's disease. J. Agric. Food Chem. 63, 6979-6988.   DOI
13 Lee, J., Cho, E., Kwon, H., Jeon, J., Jung, C. J., Moon, M., Jun, M., Lee, Y. C., Kim, D. H. and Jung, J. W. (2019) The fruit of Crataegus pinnatifida ameliorates memory deficits in beta-amyloid proteininduced Alzheimer's disease mouse model. J. Ethnopharmacol. 243, 112107.   DOI
14 Kim, J. M., Hwang, K. W., Joo, H. B. and Park, S. Y. (2015b) Antiamyloidogenic properties of dryopteris crassirhizoma roots in Alzheimer's disease cellular model. J. Food Biochem. 39, 478-484.   DOI
15 Kuhn, P. H., Wang, H., Dislich, B., Colombo, A., Zeitschel, U., Ellwart, J. W., Kremmer, E., Rossner, S. and Lichtenthaler, S. F. (2010) ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. EMBO J. 29, 3020-3032.   DOI
16 Lammich, S., Kojro, E., Postina, R., Gilbert, S., Pfeiffer, R., Jasionowski, M., Haass, C. and Fahrenholz, F. (1999) Constitutive and regulated alpha-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl. Acad. Sci. U.S.A. 96, 3922-3927.   DOI
17 Lv, C., Yang, F., Qin, R., Qi, Z., Zhou, W. and Lu, J. (2017) Bioactivityguided isolation of chemical constituents against H2O2-induced neurotoxicity on PC12 from Cimicifuga dahurica (Turcz.) Maxim. Bioorg. Med. Chem. Lett. 27, 3305-3309.   DOI
18 Park, S. Y. (2010) Potential therapeutic agents against Alzheimer's disease from natural sources. Arch. Pharm. Res. 33, 1589-1609.   DOI
19 Prince, M., Bryce, R., Albanese, E., Wimo, A., Ribeiro, W. and Ferri, C. P. (2013) The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 9, 63-75.e2.   DOI
20 Qin, R., Zhao, Y., Zhao, Y., Zhou, W., Lv, C. and Lu, J. (2016) Polyphenolic compounds with antioxidant potential and neuro-protective effect from Cimicifuga dahurica (Turcz.) Maxim. Fitoterapia 115, 52-56.   DOI
21 Zhang, L. L., Si, J. Y., Zhang, L. J., Xiao-Wei, H., Lin, L., Li, R. Y., Chen, D. and Cao, L. (2016) Synergistic anti-tumor activity and mechanisms of total glycosides from Cimicifuga dahurica in combination with cisplatin. Chin. J. Integr. Med. doi: 10.1007/s11655-015-2108-3 [Online ahead of print].   DOI
22 Vassar, R., Kovacs, D. M., Yan, R. and Wong, P. C. (2009) The betasecretase enzyme BACE in health and Alzheimer's disease: regulation, cell biology, function, and therapeutic potential. J. Neurosci. 29, 12787-12794.   DOI
23 Scheltens, P., Blennow, K., Breteler, M. M., de Strooper, B., Frisoni, G. B., Salloway, S. and Van der Flier, W. M. (2016) Alzheimer's disease. Lancet 388, 505-517.   DOI