Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.180

Diallyl Biphenyl-Type Neolignans Have a Pharmacophore of PPARα/γ Dual Modulators  

Han, Yujia (College of Pharmacy and Natural Products Research Institute, Seoul National University)
Liu, Jingjing (College of Pharmacy and Natural Products Research Institute, Seoul National University)
Ahn, Sungjin (College of Pharmacy and Natural Products Research Institute, Seoul National University)
An, Seungchan (College of Pharmacy and Natural Products Research Institute, Seoul National University)
Ko, Hyejin (College of Pharmacy and Natural Products Research Institute, Seoul National University)
Shin, Jeayoung C. (College of Pharmacy and Natural Products Research Institute, Seoul National University)
Jin, Sun Hee (College of Pharmacy and Natural Products Research Institute, Seoul National University)
Ki, Min Won (College of Pharmacy and Natural Products Research Institute, Seoul National University)
Lee, So Hun (SK Bioland)
Lee, Kang Hyuk (SK Bioland)
Shin, Song Seok (SK Bioland)
Choi, Won Jun (College of Pharmacy, Dongguk University)
Noh, Minsoo (College of Pharmacy and Natural Products Research Institute, Seoul National University)
Publication Information
Biomolecules & Therapeutics / v.28, no.5, 2020 , pp. 397-404 More about this Journal
Abstract
Adiponectin secretion-promoting compounds have therapeutic potentials in human metabolic diseases. Diallyl biphenyl-type neolignan compounds, magnolol, honokiol, and 4-O-methylhonokiol, from a Magnolia officinalis extract were screened as adiponectin-secretion promoting compounds in the adipogenic differentiation model of human bone marrow mesenchymal stem cells (hBM-MSCs). In a target identification study, magnolol, honokiol, and 4-O-methylhonokiol were elucidated as PPARα and PPARγ dual modulators. Diallyl biphenyl-type neolignans affected the transcription of lipid metabolism-associated genes in a different way compared to those of specific PPAR ligands. The diallyl biphenyl-type neolignan structure provides a novel pharmacophore of PPARα/γ dual modulators, which may have unique therapeutic potentials in diverse metabolic diseases.
Keywords
Diallyl biphenyl-type neolignans; Adiponectin; Human bone marrow mesenchymal stem cells; Peroxisome proliferator-activated receptor ${\alpha}/{\gamma}$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, S. O., Han, Y., Ahn, S., An, S., Shin, J. C., Choi, H., Kim, H. J., Park, N. H., Kim, Y. J., Jin, S. H., Rho, H. S. and Noh, M. (2018) Kojylcinnamate esters are peroxisome proliferator-activated receptor ${\alpha}/{\gamma}$ dual agonists. Bioorg. Med. Chem. 26, 5654-5663.   DOI
2 Lefterova, M. I., Haakonsson, A. K., Lazar, M. A. and Mandrup, S. (2014) $PPAR{\gamma}$ and the global map of adipogenesis and beyond. Trends Endocrinol. Metab. 25, 293-302.   DOI
3 Lehmann, J. M., Lenhard, J. M., Oliver, B. B., Ringold, G. M. and Kliewer, S. A. (1997) Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J. Biol. Chem. 272, 3406-3410.   DOI
4 Liang, X., Xing, W., He, J., Fu, F., Zhang, W., Su, F., Liu, F., Ji, L., Gao, F., Su, H., Sun, X. and Zhang, H. (2015) Magnolol administration in normotensive young spontaneously hypertensive rats postpones the development of hypertension: role of increased PPAR gamma, reduced TRB3 and resultant alleviative vascular insulin resistance. PLoS ONE 10, e0120366.   DOI
5 Fukuen, S., Iwaki, M., Yasui, A., Makishima, M., Matsuda, M. and Shimomura, L. (2005) Sulfonylurea agents exhibit peroxisome proliferator-activated receptor gamma agonistic activity. J. Biol. Chem. 280, 23653-23659.   DOI
6 Garcia-Vallve, S., Guasch, L., Tomas-Hernandez, S., del Bas, J. M., Ollendorff, V., Arola, L., Pujadas, G. and Mulero, M. (2015) Peroxisome proliferator-activated receptor $\gamma$ ($PPAR{\gamma}$) and ligand choreography: newcomers take the stage. J. Med. Chem. 58, 5381-5394.   DOI
7 Hughes, T. S., Giri, P. K., de Vera, I. M., Marciano, D. P., Kuruvilla, D. S., Shin, Y., Blayo, A. L., Kamenecka, T. M., Burris, T. P., Griffin, P. R. and Kojetin, D. J. (2014) An alternate binding site for $PPAR{\gamma}$ ligands. Nat. Commun. 5, 3571.   DOI
8 Gross, B., Pawlak, M., Lefebvre, P. and Staels, B. (2017) PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat. Rev. Endocrinol. 13, 36-49.   DOI
9 Henry, R. R., Lincoff, A. M., Mudaliar, S., Rabbia, M., Chognot, C. and Herz, M. (2009) Effect of the dual peroxisome proliferator-activated $receptor-{\alpha}/{\gamma}$ agonist aleglitazar on risk of cardiovascular disease in patients with type 2 diabetes (SYNCHRONY): a phase II, randomised, dose-ranging study. Lancet 374, 126-135.   DOI
10 Home, P. (2011) Safety of PPAR agonists. Diabetes Care 34, S215-S219.   DOI
11 Iwaki, M., Matsuda, M., Maeda, N., Funahashi, T., Matsuzawa, Y., Makishima, M. and Shimomura, I. (2003) Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 52, 1655-1663.   DOI
12 Wang, L., Waltenberger, B., Pferschy-Wenzig, E. M., Blunder, M., Liu, X., Malainer, C., Schuster, D., Blazevic, T., Schwaiger, S., Rollinger, J. M., Heiss, E. H., Schuster, D., Kopp, B., Bauer, R., Stuppner, H., Dirsch, V. M. and Atanasov, A. G. (2014) Natural product agonists of peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$): a review. Biochem. Pharmacol. 92, 73-89.   DOI
13 Lincoff, A. M., Tardif, J. C., Schwartz, G. G., Nicholls, S. J., Ryden, L., Neal, B., Malmberg, K., Wedel, H., Buse, J. B., Henry, R. R., Weichert, A., Cannata, R., Svensson, A., Volz, D. and Grobbee, D. E. (2014) Effect of aleglitazar on cardiovascular outcomes after acute coronary syndrome in patients with type 2 diabetes mellitus: the AleCardio randomized clinical trial. JAMA 311, 1515-1525.   DOI
14 Noh, M. (2012) Interleukin-17A increases leptin production in human bone marrow mesenchymal stem cells. Biochem. Pharmacol. 83, 661-670.   DOI
15 Pfaffl, M. W., Horgan, G. W. and Dempfle, L. (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, e36.   DOI
16 Shin, D. W., Kim, S. N., Lee, S. M., Lee, W., Song, M. J., Park, S. M., Lee, T. R., Baik, J. H., Kim, H. K., Hong, J. H. and Noh, M. (2009) (-)-Catechin promotes adipocyte differentiation in human bone marrow mesenchymal stem cells through PPAR gamma transactivation. Biochem. Pharmacol. 77, 125-133.   DOI
17 Straub, L. G. and Scherer, P. E. (2019) Metabolic messengers: adiponectin. Nat. Metab. 1, 334-339.   DOI
18 Waragai, M., Ho, G., Takamatsu, Y., Shimizu, Y., Sugino, H., Sugama, S., Takenouchi, T., Masliah, E. and Hashimoto, M. (2018) Dual-therapy strategy for modification of adiponectin receptor signaling in aging-associated chronic diseases. Drug Discov. Today 23, 1305-1311.   DOI
19 Xu, H. E., Stanley, T. B., Montana, V. G., Lambert, M. H., Shearer, B. G., Cobb, J. E., McKee, D. D., Galardi, C. M., Plunket, K. D., Nolte, R. T., Parks, D. J., Moore, J. T., Kliewer, S. A., Willson, T. M. and Stimmel, J. B. (2002) Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARalpha. Nature 415, 813-817.   DOI
20 Xu, H. E., Lambert, M. H., Montana, V. G., Parks, D. J., Blanchard, S. G., Brown, P. J., Sternbach, D. D., Lehmann, J. M., Wisely, G. B., Willson, T. M., Kliewer, S. A. and Milburn, M. V. (1999) Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol. Cell 3, 397-403.   DOI
21 Yamauchi, T. and Kadowaki, T. (2008) Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases. Int. J. Obes. (Lond.) 32, S13-S18.
22 Yamauchi, T., Kamonm, J., Minokoshi, Y. A., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K., Eto, K., Akanuma, Y., Froguel, P., Foufelle, F., Ferre, P., Carling, D., Kimura, S., Nagai, R., Kahn, B. B. and Kadowaki, T. (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288-1295.   DOI
23 Yu, J., Ahn, S., Kim, H. J., Lee, M., Ahn, S., Kim, J., Jin, S. H., Lee, E., Kim, G., Cheong, J. H., Jacobson, K. A., Jeong, L. S. and Noh, M. (2017) Polypharmacology of N6-(3-Iodobenzyl) adenosine-5′-N-methyluronamide (IB-MECA) and related A3 adenosine receptor ligands: peroxisome proliferator activated receptor (PPAR) ${\gamma}$ partial agonist and $PPAR{\delta}$ antagonist activity suggests their antidiabetic potential. J. Med. Chem. 60, 7459-7475.   DOI
24 Zhang, H., Xu, X., Chen, L., Chen, J., Hu, L., Jiang, H. and Shen, X. (2011) Molecular determinants of magnolol targeting both $RXR{\alpha}$ and $PPAR{\gamma}$. PLoS ONE 6, e28253.   DOI
25 Chakrabarti, P. (2010) Promoting adipose specificity: the adiponectin promoter. Endocrinology 151, 2408-2410.   DOI
26 Ahn, S., Lee, M., An, S., Hyun, S., Hwang, J., Lee, J. and Noh, M. (2018) 2-Formyl-komarovicine promotes adiponectin production in human mesenchymal stem cells through $PPAR{\gamma}$ partial agonism. Bioorg. Med. Chem. 26, 1069-1075.   DOI
27 Trott, O. and Olson, A. J. (2010) AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455-461.
28 Atanasov, A. G., Wang, J. N., Gu, S. P., Bu, J., Kramer, M. P., Baumgartner, L., Fakhrudin, N., Ladurner, A., Malainer, C., Vuorinen, A., Noha, S. M, Schwaiger, S., Rollinger, J. M., Schuster, D., Stuppner, H., Dirsch, V. M. and Heiss, E. H. (2013) Honokiol: a non-$adipogenicPPAR{\gamma}$ agonist from nature. Biochim. Biophys. Acta 1830, 4813-4819.   DOI
29 Bernardes, A., Souza, P. C., Muniz, J. R., Ricci, C. G., Ayers, S. D., Parekh, N. M., Godoy, A. S., Trivella, D. B., Reinach, P., Webb, P., Skaf, M. S. and Polikarpov, I. (2013) Molecular mechanism of peroxisome proliferator-activated receptor $\alpha$ activation by WY14643: a new mode of ligand recognition and receptor stabilization. J. Mol. Biol. 425, 2878-2893.   DOI
30 Byun, Y., Park, J., Hong, S. H., Han, M. H., Park, S., Jung, H. and Noh, M. (2013) The opposite effect of isotype-selective monoamine oxidase inhibitors on adipogenesis in human bone marrow mesenchymal stem cells. Bioorg. Med. Chem. Lett. 23, 3273-3276.   DOI
31 Farmer, S. R. (2005) Regulation of PPARgamma activity during adipogenesis. Int. J. Obes. 29, S13-S16.   DOI
32 Chen, Q., Shou. P., Zheng, C., Jiang, M., Cao, G., Yang, Q., Cao, J., Xie, N., Velletri, T., Zhang, X., Xu, C., Zhang, L., Yang, H., Hou, J., Wang, Y. and Shi, Y. (2016) Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ. 23, 1128-1139.   DOI
33 Dalamaga, M., Diakopoulos, K. N. and Mantzoros, C. S. (2012) The role of adiponectin in cancer: a review of current evidence. Endocr. Rev. 33, 547-594.   DOI
34 Erickson, J. A., Jalaie, M., Robertson, D. H., Lewis, R. A. and Vieth, M. (2004) Lessons in molecular recognition: the effects of ligand and protein flexibility on molecular docking accuracy. J. Med. Chem. 47, 45-55.   DOI
35 Kershaw, E. E. and Flier, J. S. (2004) Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 89, 2548-2556.   DOI
36 Jain, M. R., Giri, S. R., Bhoi, B., Trivedi, C., Rath, A., Rathod, R., Ranvir, R., Kadam, S., Patel, H., Swain, P., Roy, S. S., Das, N., Karmakar, E., Wahli, W. and Patel, P. R. (2018) Dual $PPAR{\alpha}/{\gamma}$ agonist saroglitazar improves liver histopathology and biochemistry in experimental NASH models. Liver Int. 38, 1084-1094.   DOI