Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.152

Imipramine Ameliorates Depressive Symptoms by Blocking Differential Alteration of Dendritic Spine Structure in Amygdala and Prefrontal Cortex of Chronic Stress-Induced Mice  

Leem, Yea-Hyun (Department of Pharmacy, College of Pharmacy, Dankook University)
Yoon, Sang-Sun (Department of Pharmacy, College of Pharmacy, Dankook University)
Jo, Sangmee Ahn (Department of Pharmacy, College of Pharmacy, Dankook University)
Publication Information
Biomolecules & Therapeutics / v.28, no.3, 2020 , pp. 230-239 More about this Journal
Abstract
Previous studies have shown disrupted synaptic plasticity and neural activity in depression. Such alteration is strongly associated with disrupted synaptic structures. Chronic stress has been known to induce changes in dendritic structure in the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC), but antidepressant effect on structure of these brain areas has been unclear. Here, the effects of imipramine on dendritic spine density and morphology in BLA and mPFC subregions of stressed mice were examined. Chronic restraint stress caused depressive-like behaviors such as enhanced social avoidance and despair level coincident with differential changes in dendritic spine structure. Chronic stress enhanced dendritic spine density in the lateral nucleus of BLA with no significant change in the basal nucleus of BLA, and altered the proportion of stubby or mushroom spines in both subregions. Conversely, in the apical and basal mPFC, chronic stress caused a significant reduction in spine density. The proportion of stubby or mushroom spines in these subregions overall reduced while the proportion of thin spines increased after repeated stress. Interestingly, most of these structural alterations by chronic stress were reversed by imipramine. In addition, structural changes caused by stress and blocking the changes by imipramine were corelated well with altered activation and expression of synaptic plasticity-promoting molecules such as phospho-CREB, phospho-CAMKII, and PSD-95. Collectively, our data suggest that imipramine modulates stress-induced changes in synaptic structure and synaptic plasticity-promoting molecules in a coordinated manner although structural and molecular alterations induced by stress are distinct in the BLA and mPFC.
Keywords
Depression; Dendritic spine; Basolateral amygdala; Medial prefrontal cortex; CaMKII; CREB;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Duric, V., Banasr, M., Stockmeier, C. A., Simen, A. A., Newton, S. S., Overholser, J. C., Jurjus, G. J., Dieter, L. and Duman, R. S. (2013) Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int. J. Neuropsychopharmacol. 16, 69-82.   DOI
2 Ehrlich, I. and Malinow, R. (2004) Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J. Neurosci. 24, 916-927.   DOI
3 Frodl, T., Meisenzahl, E., Zetzsche, T., Bottlender, R., Born, C., Groll, C., Jager, M., Leinsinger, G., Hahn, K. and Moller, H. J. (2002) Enlargement of the amygdala in patients with a first episode of major depression. Biol. Psychiatry 51, 708-714.   DOI
4 Harris, K. M., Jensen, F. E. and Tsao, B. (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci. 12, 2685-2705.   DOI
5 Horner, C. H. and Arbuthnott, E. (1991) Methods of estimation of spine density--are spines evenly distributed throughout the dendritic field? J. Anat. 177, 179-184.
6 Kaidanovich-Beilin, O., Lipina, T., Vukobradovic, I., Roder, J. and Woodgett, J. R. (2011) Assessment of social interaction behaviors. J. Vis. Exp. 25, 2473.
7 Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N. and Nakahara, H. (2003) Structure-stability-function relationships of dendritic spines. Trends Neurosci. 26, 360-368.   DOI
8 Kim, E. and Sheng, M. (2004) PDZ domain proteins of synapses. Nat. Rev. Neurosci. 5, 771-781.   DOI
9 Kroner, S., Rosenkranz, J. A., Grace, A. A. and Barrionuevo, G. (2005) Dopamine modulates excitability of basolateral amygdala neurons in vitro. J. Neurophysiol. 93, 1598-1610.   DOI
10 Lange, C. and Irle, E. (2004) Enlarged amygdala volume and reduced hippocampal volume in young women with major depression. Psychol. Med. 34, 1059-1064.   DOI
11 Leem, Y. H., Yoon, S. S., Kim, Y. H. and Jo, S. A. (2014) Disrupted MEK/ERK signaling in the medial orbital cortex and dorsal endopiriform nuclei of the prefrontal cortex in a chronic restraint stress mouse model of depression. Neurosci. Lett. 580, 163-168.   DOI
12 Leuner, B., Fredericks, P. J., Nealer, C. and Albin-Brooks, C. (2014) Chronic gestational stress leads to depressive-like behavior and compromises medial prefrontal cortex structure and function during the postpartum period. PLoS ONE 9, e89912.   DOI
13 Leuner, B. and Shors, T. J. (2013) Stress, anxiety, and dendritic spines: what are the connections? Neuroscience 251, 108-119.   DOI
14 Lisman, J., Schulman, H. and Cline, H. (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3, 175-190.   DOI
15 Li, N., Liu, R. J., Dwyer, J. M., Banasr, M., Lee, B., Son, H., Li, X. Y., Aghajanian, G. and Duman, R. S. (2011) Glutamate N-methyl-Daspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol. Psychiatry 69, 754-761.   DOI
16 Liu, S. J. and Zukin, R. S. (2007) Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci. 30, 126-134.   DOI
17 Rosenkranz, J. A., Venheim, E. R. and Padival, M. (2010) Chronic stress causes amygdala hyperexcitability in rodents. Biol. Psychiatry 67, 1128-1136.   DOI
18 Kulkarni, V. A. and Firestein, B. L. (2012) The dendritic tree and brain disorders. Mol. Cell. Neurosci. 50, 10-20.   DOI
19 Luczynski, P., Moquin, L. and Gratton, A. (2015) Chronic stress alters the dendritic morphology of callosal neurons and the acute glutamate stress response in the rat medial prefrontal cortex. Stress 18, 654-667.   DOI
20 Radley, J. J., Rocher, A. B., Rodriguez, A., Ehlenberger, D. B., Dammann, M., McEwen, B. S., Morrison, J. H., Wearne, S. L. and Hof, P. R. (2008) Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex. J. Comp. Neurol. 507, 1141-1150.   DOI
21 Rosenkranz, J. A. and Grace, A. A. (2002) Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J. Neurosci. 22, 324-337.   DOI
22 Sapolsky, R. M. (2000) The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biol. Psychiatry 48, 755-765.   DOI
23 Sargin, D., Mercaldo, V., Yiu, A. P., Higgs, G., Han, J. H., Frankland, P. W. and Josselyn, S. A. (2013) CREB regulates spine density of lateral amygdala neurons: implications for memory allocation. Front. Behav. Neurosci. 7, 209.   DOI
24 Segal, M. and Andersen, P. (2000) Dendritic spines shaped by synaptic activity. Curr. Opin. Neurobiol. 10, 582-586.   DOI
25 Nimchinsky, E. A., Sabatini, B. L. and Svoboda, K. (2002) Structure and function of dendritic spines. Annu. Rev. Physiol. 64, 313-353.   DOI
26 Sousa, N., Lukoyanov, N. V., Madeira, M. D., Almeida, O. F. and Paula-Barbosa, M. M. (2000) Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 97, 253-266.   DOI
27 Tavosanis, G. (2012) Dendritic structural plasticity. Dev. Neurobiol. 72, 73-86.   DOI
28 Treadway, M. T. and Zald, D. H. (2011) Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci. Biobehav. Rev. 35, 537-555.   DOI
29 Matsuzaki, M., Ellis-Davies, G. C., Nemoto, T., Miyashita, Y., Iino, M. and Kasai, H. (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4, 1086-1092.   DOI
30 McDonald, A. J. (1991) Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience 44, 1-14.   DOI
31 Nishiyama, J. and Yasuda, R. (2015) Biochemical computation for spine structural plasticity. Neuron 87, 63-75.   DOI
32 Padival, M., Quinette, D. and Rosenkranz, J. A. (2013) Effects of repeated stress on excitatory drive of basal amygdala neurons in vivo. Neuropsychopharmacology 38, 1748-1762.   DOI
33 Peters, A. and Kaiserman-Abramof, I. R. (1970) The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am. J. Anat. 127, 321-355.   DOI
34 Yi, E. S., Oh, S., Lee, J. K. and Leem, Y. H. (2017) Chronic stressinduced dendritic reorganization and abundance of synaptosomal PKA-dependent CP-AMPA receptor in the basolateral amygdala in a mouse model of depression. Biochem. Biophys. Res. Commun. 486, 671-678.   DOI
35 Pham, K., Nacher, J., Hof, P. R. and McEwen, B. S. (2003) Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur. J. Neurosci. 17, 879-886.   DOI
36 Price, J. L. and Drevets, W. C. (2010) Neurocircuitry of mood disorders. Neuropsychopharmacology 35, 192-216.   DOI
37 Quan, M., Zheng, C., Zhang, N., Han, D., Tian, Y., Zhang, T. and Yang, Z. (2011) Impairments of behavior, information flow between thalamus and cortex, and prefrontal cortical synaptic plasticity in an animal model of depression. Brain Res. Bull. 85, 109-116.   DOI
38 Tyler, W. J. and Pozzo-Miller, L. (2003) Miniature synaptic transmission and BDNF modulate dendritic spine growth and form in rat CA1 neurones. J. Physiol. 553, 497-509.   DOI
39 Vaynman, S., Ying, Z. and Gomez-Pinilla, F. (2007) The select action of hippocampal calcium calmodulin protein kinase II in mediating exercise-enhanced cognitive function. Neuroscience 144, 825-833.   DOI
40 Yuste, R., Majewska, A. and Holthoff, K. (2000) From form to function: calcium compartmentalization in dendritic spines. Nat. Neurosci. 3, 653-659.   DOI
41 Duman, R. S. and Monteggia, L. M. (2006) A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 59, 1116-1127.   DOI
42 Bourne, J. N. and Harris, K. M. (2008) Balancing structure and function at hippocampal dendritic spines. Annu. Rev. Neurosci. 31, 47-67.   DOI
43 Chocyk, A., Bobula, B., Dudys, D., Przyborowska, A., Majcher-Maslanka, I., Hess, G. and Wedzony, K. (2013) Early-life stress affects the structural and functional plasticity of the medial prefrontal cortex in adolescent rats. Eur. J. Neurosci. 38, 2089-2107.   DOI
44 Correll, C. M., Rosenkranz, J. A. and Grace, A. A. (2005) Chronic cold stress alters prefrontal cortical modulation of amygdala neuronal activity in rats. Biol. Psychiatry 58, 382-391.   DOI