Browse > Article
http://dx.doi.org/10.4062/biomolther.2018.227

Lodoxamide Attenuates Hepatic Fibrosis in Mice: Involvement of GPR35  

Kim, Mi-Jeong (College of Pharmacy, Pusan National University)
Park, Soo-Jin (College of Pharmacy, Pusan National University)
Nam, So-Yeon (College of Pharmacy, Pusan National University)
Im, Dong-Soon (College of Pharmacy, Pusan National University)
Publication Information
Biomolecules & Therapeutics / v.28, no.1, 2020 , pp. 92-97 More about this Journal
Abstract
A previous pharmacogenomic analysis identified cromolyn, an anti-allergic drug, as an effective anti-fibrotic agent that acts on hepatocytes and stellate cells. Furthermore, cromolyn was shown to be a G protein-coupled receptor 35 (GPR35) agonist. However, it has not been studied whether anti-fibrotic effects are mediated by GPR35. Therefore, in this study, the role of GPR35 in hepatic fibrosis was investigated through the use of lodoxamide, another anti-allergic drug and a potent GPR35 agonist. Long-term treatment with carbon tetrachloride induced hepatic fibrosis, which was inhibited by treatment with lodoxamide. Furthermore, CID2745687, a specific GPR35 antagonist, reversed lodoxamide-mediated anti-fibrotic effects. In addition, lodoxamide treatment showed significant effects on the mRNA expression of collagen Iα1, collagen Iα2, and TGF-β1 in the extracellular matrix. However, a transforming growth factor α (TGF-α) shedding assay revealed lodoxamide not to be a potent agonist of mouse GPR35 in vitro. Therefore, these results showed anti-fibrotic effects of lodoxamide in mice and raise concerns how lodoxamide protects against liver fibrosis in vivo and whether GPR35 is involved in the action.
Keywords
Fibrosis; Liver; Lodoxamide; CID2745687; Carbon tetrachloride;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 MacKenzie, A. E., Caltabiano, G., Kent, T. C., Jenkins, L., McCallum, J. E., Hudson, B. D., Nicklin, S. A., Fawcett, L., Markwick, R., Charlton, S. J. and Milligan, G. (2014) The antiallergic mast cell stabilizers lodoxamide and bufrolin as the first high and equipotent agonists of human and rat GPR35. Mol. Pharmacol. 85, 91-104.   DOI
2 Milligan, G. (2018) G protein-coupled receptors not currently in the spotlight: free fatty acid receptor 2 and GPR35. Br. J. Pharmacology 175, 2543-2553.   DOI
3 Nallagangula, K. S., Nagaraj, S. K., Venkataswamy, L. and Chandrappa, M. (2017) Liver fibrosis: a compilation on the biomarkers status and their significance during disease progression. Future Sci. OA 4, FSO250.   DOI
4 Nam, S. Y., Park, S. J. and Im, D. S. (2019) Protective effect of lodoxamide on hepatic steatosis through GPR35. Cell Signal. 53, 190-200.   DOI
5 Neetoo-Isseljee, Z., MacKenzie, A. E., Southern, C., Jerman, J., Mc-Iver, E. G., Harries, N., Taylor, D. L. and Milligan, G. (2013) Highthroughput identification and characterization of novel, speciesselective GPR35 agonists. J. Pharmacol. Exp. Ther. 344, 568-578.   DOI
6 O’Dowd, B. F., Nguyen, T., Marchese, A., Cheng, R., Lynch, K. R., Heng, H. H., Kolakowski, L. F., Jr. and George, S. R. (1998) Discovery of three novel G-protein-coupled receptor genes. Genomics 47, 310-313.   DOI
7 Park, S. J. and Im, D. S. (2019) Deficiency of sphingosine-1-phosphate receptor 2 (S1P2) attenuates bleomycin-induced pulmonary fibrosis. Biomol. Ther. (Seoul) 27, 318-326.   DOI
8 Park, S. J., Lee, S. J., Nam, S. Y. and Im, D. S. (2018) GPR35 mediates lodoxamide-induced migration inhibitory response but not CXCL17-induced migration stimulatory response in THP-1 cells; is GPR35 a receptor for CXCL17? Br. J. Pharmacol. 175, 154-161.   DOI
9 Taniguchi, Y., Tonai-Kachi, H. and Shinjo, K. (2006) Zaprinast, a wellknown cyclic guanosine monophosphate-specific phosphodiesterase inhibitor, is an agonist for GPR35. FEBS Lett. 580, 5003-5008.   DOI
10 Smith, T. H., Li, J. G., Dores, M. R. and Trejo, J. (2017) Proteaseactivated receptor-4 and purinergic receptor P2Y12 dimerize, cointernalize, and activate Akt signaling via endosomal recruitment of ${\beta}$-arrestin. J. Biol. Chem. 292, 13867-13878.   DOI
11 Thimm, D., Funke, M., Meyer, A. and Muller, C. E. (2013) 6-Bromo-8-(4-[(3)H]methoxybenzamido)-4-oxo-4H-chromene-2-carboxylic acid: a powerful tool for studying orphan G protein-coupled receptor GPR35. J. Med. Chem. 56, 7084-7099.   DOI
12 Tsukahara, T., Hamouda, N., Utsumi, D., Matsumoto, K., Amagase, K. and Kato, S. (2017) G protein-coupled receptor 35 contributes to mucosal repair in mice via migration of colonicepithelial cells. Pharmacol. Res. 123, 27-39.   DOI
13 Wang, J., Simonavicius, N., Wu, X., Swaminath, G., Reagan, J., Tian, H. and Ling, L. (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J. Biol. Chem. 281, 22021-22028.   DOI
14 Yang, Y., Lu, J. Y., Wu, X., Summer, S., Whoriskey, J., Saris, C. and Reagan, J. D. (2010) G-protein-coupled receptor 35 is a target of the asthma drugs cromolyn disodium and nedocromil sodium. Pharmacology 86, 1-5.   DOI
15 Fallarini, S., Magliulo, L., Paoletti, T., de Lalla, C. and Lombardi, G. (2010) Expression of functional GPR35 in human iNKT cells. Biochem. Biophys. Res. Commun. 398, 420-425.   DOI
16 Zhao, P., Sharir, H., Kapur, A., Cowan, A., Geller, E. B., Adler, M. W., Seltzman, H. H., Reggio, P. H., Heynen-Genel, S., Sauer, M., Chung, T. D., Bai, Y., Chen, W., Caron, M. G., Barak, L. S. and Abood, M. E. (2010) Targeting of the orphan receptor GPR35 by pamoic acid: a potent activator of extracellular signal-regulated kinase and b-arrestin2 with antinociceptive activity. Mol. Pharmacol. 78, 560-568.   DOI
17 Bataller, R. and Brenner, D. A. (2005) Liver fibrosis. J. Clin. Invest. 115, 209-218.   DOI
18 Berlinguer-Palmini, R., Masi, A., Narducci, R., Cavone, L., Maratea, D., Cozzi, A., Sili, M., Moroni, F. and Mannaioni, G. (2013) GPR35 activation reduces $Ca^{2+}$ transients and contributes to the kynurenic acid-dependent reduction of synaptic activity at CA3-CA1 synapses. PLoS ONE 8, e82180.   DOI
19 Borroto-Escuela, D. O., Rodriguez, D., Romero-Fernandez, W., Kapla, J., Jaiteh, M., Ranganathan, A., Lazarova, T., Fuxe, K. and Carlsson, J. (2018) Mapping the interface of a GPCR dimer: a structural model of the A2A adenosine and D2 dopamine receptor heteromer. Front. Pharmacol. 9, 829.   DOI
20 Choi, J. S., Kim, J. K., Yang, Y. J., Kim, Y., Kim, P., Park, S. G., Cho, E. Y., Lee, D. H. and Choi, J. W. (2015) Identification of cromolyn sodium as an anti-fibrotic agent targeting both hepatocytes and hepatic stellate cells. Pharmacol. Res. 102, 176-183.   DOI
21 Funke, M., Thimm, D., Schiedel, A. C. and Muller, C. E. (2013) 8-Benzamidochromen-4-one-2-carboxylic acids: potent and selective agonists for the orphan G protein-coupled receptor GPR35. J. Med. Chem. 56, 5182-5197.   DOI
22 Jenkins, L., Brea, J., Smith, N. J., Hudson, B. D., Reilly, G., Bryant, N. J., Castro, M., Loza, M. I. and Milligan, G. (2010) Identification of novel species-selective agonists of the G-protein-coupled receptor GPR35 that promote recruitment of b-arrestin-2 and activate Ga13. Biochem. J. 432, 451-459.   DOI
23 Heynen-Genel, S., Dahl, R., Shi, S., Sauer, M., Hariharan, S., Sergienko, E., Dad, S., Chung, T. D. Y., Stonich, D., Su, Y., Caron, M., Zhao, P., Abood, M. E. and Barak, L. S. (2010a) Selective GPR35 antagonists-probes 1 & 2. In Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD).
24 Heynen-Genel, S., Dahl, R., Shi, S., Sauer, M., Hariharan, S., Sergienko, E., Dad, S., Chung, T. D. Y., Stonich, D., Su, Y., Zhao, P., Caron, M. G., Abood, M. E. and Barak, L. S. (2010b) Selective GPR35 Antagonists-Probe 3. In Probe Reports from the NIH Molecular Libraries Program, Bethesda (MD).
25 Inoue, A., Ishiguro, J., Kitamura, H., Arima, N., Okutani, M., Shuto, A., Higashiyama, S., Ohwada, T., Arai, H., Makide, K. and Aoki, J. (2012) TGFa shedding assay: an accurate and versatile method for detecting GPCR activation. Nat. Methods 9, 1021-1029.   DOI
26 Jenkins, L., Harries, N., Lappin, J. E., MacKenzie, A. E., Neetoo-Isseljee, Z., Southern, C., McIver, E. G., Nicklin, S. A., Taylor, D. L. and Milligan, G. (2012) Antagonists of GPR35 display high species ortholog selectivity and varying modes of action. J. Pharmacol. Exp. Ther. 343, 683-695.   DOI
27 Lim, S. W., Lee, D. R., Choi, B. K., Kim, H. S., Yang, S. H., Suh, J. W. and Kim, K. S. (2016) Protective effects of a polymethoxy flavonoids-rich Citrus aurantium peel extract on liver fibrosis induced by bile duct ligation in mice. Asian Pac. J. Trop. Med. 9, 1158-1164.   DOI