Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.004

Decursinol Angelate Ameliorates Dextran Sodium Sulfate-Induced Colitis by Modulating Type 17 Helper T Cell Responses  

Thapa, Bikash (Institute of Bioscience and Biotechnology, Hallym University)
Pak, Seongwon (Department of Biomedical Science, Hallym University)
Kwon, Hyun-Joo (Department of Microbiology, College of Medicine, Hallym University)
Lee, Keunwook (Institute of Bioscience and Biotechnology, Hallym University)
Publication Information
Biomolecules & Therapeutics / v.27, no.5, 2019 , pp. 466-473 More about this Journal
Abstract
Angelica gigas has been used as a Korean traditional medicine for pain relief and gynecological health. Although the extracts are reported to have an anti-inflammatory property, the bioactive compounds of the herbal plant and the effect on T cell responses are unclear. In this study, we identified decursinol angelate (DA) as an immunomodulatory ingredient of A. gigas and demonstrated its suppressive effect on type 17 helper T (Th17) cell responses. Helper T cell culture experiments revealed that DA impeded the differentiation of Th17 cells and IL-17 production without affecting the survival and proliferation of CD4 T cells. By using a dextran sodium sulfate (DSS)-induced colitis model, we determined the therapeutic potential of DA for the treatment of ulcerative colitis. DA treatment attenuated the severity of colitis including a reduction in weight loss, colon shortening, and protection from colonic tissue damage induced by DSS administration. Intriguingly, Th17 cells concurrently with neutrophils in the colitis tissues were significantly decreased by the DA treatment. Overall, our experimental evidence reveals for the first time that DA is an anti-inflammatory compound to modulate inflammatory T cells, and suggests DA as a potential therapeutic agent to manage inflammatory conditions associated with Th17 cell responses.
Keywords
Angelica gigas; Decursinol angelate; Type 17 helper T cell; IL-17; Ulcerative colitis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Allez, M. and Mayer, L. (2004) Regulatory T cells: peace keepers in the gut. Inflamm. Bowel Dis. 10, 666-676.   DOI
2 Baumgart, D. C. and Carding, S. R. (2007) Inflammatory bowel disease: cause and immunobiology. Lancet 369, 1627-1640.   DOI
3 Boschetti, G., Kanjarawi, R., Bardel, E., Collardeau-Frachon, S., Duclaux- Loras, R., Moro-Sibilot, L., Almeras, T., Flourie, B., Nancey, S. and Kaiserlian, D. (2017) Gut inflammation in mice triggers proliferation and function of mucosal Foxp3+ regulatory T cells but impairs their conversion from CD4+ T cells. J. Crohns Colitis 11, 105-117.   DOI
4 Cho, J. H., Kwon, J. E., Cho, Y., Kim, I. and Kang, S. C. (2015) Anti-inflammatory effect of Angelica gigas via heme oxygenase (HO)-1 expression. Nutrients 7, 4862-4874.   DOI
5 Choi, K. O., Lee, I., Paik, S. Y., Kim, D. E., Lim, J. D., Kang, W. S. and Ko, S. (2012) Ultrafine Angelica gigas powder normalizes ovarian hormone levels and has antiosteoporosis properties in ovariectomized rats: particle size effect. J. Med. Food 15, 863-872.   DOI
6 de Mattos, B. R., Garcia, M. P., Nogueira, J. B., Paiatto, L. N., Albuquerque, C. G., Souza, C. L., Fernandes, L. G., Tamashiro, W. M. and Simioni, P. U. (2015) Inflammatory bowel disease: an overview of immune mechanisms and biological treatments. Mediators Inflamm. 2015, 493012.   DOI
7 Gitter, A. H., Wullstein, F., Fromm, M. and Schulzke, J. D. (2001) Epithelial barrier defects in ulcerative colitis: characterization and quantification by electrophysiological imaging. Gastroenterology 121, 1320-1328.   DOI
8 Ivanov, II, McKenzie, B. S., Zhou, L., Tadokoro, C. E., Lepelley, A., Lafaille, J. J., Cua, D. J. and Littman, D. R. (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121-1133.   DOI
9 Harrison, O. J. and Powrie, F. M. (2013) Regulatory T cells and immune tolerance in the intestine. Cold Spring Harb. Perspect. Biol. 5, a018341.   DOI
10 Ito, R., Kita, M., Shin-Ya, M., Kishida, T., Urano, A., Takada, R., Sakagami, J., Imanishi, J., Iwakura, Y., Okanoue, T., Yoshikawa, T., Kataoka, K. and Mazda, O. (2008) Involvement of IL-17A in the pathogenesis of DSS-induced colitis in mice. Biochem. Biophys. Res. Commun. 377, 12-16.   DOI
11 Jiang, C., Guo, J., Wang, Z., Xiao, B., Lee, H. J., Lee, E. O., Kim, S. H. and Lu, J. (2007) Decursin and decursinol angelate inhibit estrogen-stimulated and estrogen-independent growth and survival of breast cancer cells. Breast Cancer Res. 9, R77.   DOI
12 Jiang, X. P., Huang, X. L., Yang, Z. P., Wang, S. C., Xie, W., Miao, L., Tang, L. and Huang, Z. M. (2018) Iguratimod ameliorates inflammatory responses by modulating the Th17/Treg paradigm in dextran sulphate sodium-induced murine colitis. Mol. Immunol. 93, 9-19.   DOI
13 Kim, B. S., Seo, H., Kim, H. J., Bae, S. M., Son, H. N., Lee, Y. J., Ryu, S., Park, R. W. and Nam, J. O. (2015) Decursin from Angelica gigas Nakai inhibits B16F10 melanoma growth through induction of apoptosis. J. Med. Food 18, 1121-1127.   DOI
14 Kim, E. R. and Chang, D. K. (2014) Colorectal cancer in inflammatory bowel disease: the risk, pathogenesis, prevention and diagnosis. World J. Gastroenterol. 20, 9872-9881.   DOI
15 Kim, J. H., Jeong, J. H., Jeon, S. T., Kim, H., Ock, J., Suk, K., Kim, S. I., Song, K. S. and Lee, W. H. (2006) Decursin inhibits induction of inflammatory mediators by blocking nuclear factor-kappaB activation in macrophages. Mol. Pharmacol. 69, 1783-1790.   DOI
16 Matricon, J., Barnich, N. and Ardid, D. (2010) Immunopathogenesis of inflammatory bowel disease. Self Nonself 1, 299-309.   DOI
17 Lee, K., Gudapati, P., Dragovic, S., Spencer, C., Joyce, S., Killeen, N., Magnuson, M. A. and Boothby, M. (2010) Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32, 743-753.   DOI
18 Lee, K., Heffington, L., Jellusova, J., Nam, K. T., Raybuck, A., Cho, S. H., Thomas, J. W., Rickert, R. C. and Boothby, M. (2013) Requirement for Rictor in homeostasis and function of mature B lymphoid cells. Blood 122, 2369-2379.
19 Longhi, M. S., Vuerich, M., Kalbasi, A., Kenison, J. E., Yeste, A., Csizmadia, E., Vaughn, B., Feldbrugge, L., Mitsuhashi, S., Wegiel, B., Otterbein, L., Moss, A., Quintana, F. J. and Robson, S. C. (2017) Bilirubin suppresses Th17 immunity in colitis by upregulating CD39. JCI Insight 2, e92791.   DOI
20 Maharjan, S., Park, B. K., Lee, S. I., Lim, Y., Lee, K. and Kwon, H. J. (2018) Gomisin G inhibits the growth of triple-negative breast cancer cells by suppressing AKT phosphorylation and decreasing cyclin D1. Biomol. Ther. (Seoul) 26, 322-327.   DOI
21 Monteleone, I., Sarra, M., Pallone, F. and Monteleone, G. (2012) Th17-related cytokines in inflammatory bowel diseases: friends or foes? Curr. Mol. Med. 12, 592-597.   DOI
22 Neurath, M. F. (2014) Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14, 329-342.   DOI
23 Oh, S. R., Ok, S., Jung, T. S., Jeon, S. O., Park, J. M., Jung, J. W. and Ryu, D. S. (2017) Protective effect of decursin and decursinol angelate-rich Angelica gigas Nakai extract on dextran sulfate sodium-induced murine ulcerative colitis. Asian Pac. J. Trop. Med. 10, 864-870.   DOI
24 Lee, G. R. (2018) The balance of Th17 versus Treg cells in autoimmunity. Int. J. Mol. Sci. 19, E730.   DOI
25 Zhu, J. and Paul, W. E. (2008) CD4 T cells: fates, functions, and faults. Blood 112, 1557-1569.   DOI
26 Rudensky, A. Y. (2011) Regulatory T cells and Foxp3. Immunol. Rev. 241, 260-268.   DOI
27 Strober, W. and Fuss, I. J. (2011) Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140, 1756-1767.   DOI
28 Tesmer, L. A., Lundy, S. K., Sarkar, S. and Fox, D. A. (2008) Th17 cells in human disease. Immunol. Rev. 223, 87-113.   DOI