Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.013

Combination of a Rapidly Penetrating Agonist and a Slowly Penetrating Antagonist Affords Agonist Action of Limited Duration at the Cellular Level  

Pearce, Larry V. (Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute)
Ann, Jihyae (Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University)
Blumberg, Peter M. (Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute)
Lee, Jeewoo (Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University)
Publication Information
Biomolecules & Therapeutics / v.27, no.5, 2019 , pp. 435-441 More about this Journal
Abstract
The capsaicin receptor TRPV1 (transient receptor potential vanilloid 1) has been an object of intense interest for pharmacological development on account of its critical role in nociception. In the course of structure activity analysis, it has become apparent that TRPV1 ligands may vary dramatically in the rates at which they interact with TRPV1, presumably reflecting differences in their abilities to penetrate into the cell. Using a fast penetrating agonist together with an excess of a slower penetrating antagonist, we find that we can induce an agonist response of limited duration and, moreover, the duration of the agonist response remains largely independent of the absolute dose of agonist, as long as the ratio of antagonist to agonist is held constant. This general approach for limiting agonist duration under conditions in which absolute agonist dose is variable should have more general applicability.
Keywords
TRPV1; Capsaicin; Resiniferatoxin; Vanilloid; Pain; Pharmacodynamics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Seabrook, G. R., Sutton, K. G., Jarolimek, W., Hollingworth, G. J., Teague, S., Webb, J., Clark, N., Boyce, S., Kerby, J., Ali, Z., Chou, M., Middleton, R., Kaczorowski, G. and Jones, A. B. (2002) Functional properties of the high-affinity TRPV1 (VR1) vanilloid receptor antagonist (4-hydroxy-5-iodo-3-methoxyphenylacetate ester) iodo-resiniferatoxin. J. Pharmacol. Exp. Ther. 303, 1052-1060.   DOI
2 Szallasi, A. and Sheta, M. (2012) Targeting TRPV1 for pain relief: limits, losers, and laurels. Expert Opin. Investig. Drugs 21, 1351-1369.   DOI
3 Tozer, T. N. and Rowland, M. (2006) Introduction to Pharmacokinetics and Pharmacodynamics: the Quantitative Basis of Drug Therapy. Lippincott Williams & Wilkins, Philadelphia.
4 Valenzano, K. J., Grant, E. R., Wu, G., Hachicha, M., Schmid, L., Tafesse, L., Sun, Q., Rotshteyn, Y., Francis, J., Limberis, J., Malik, S., Whittemore, E. R. and Hodges, D. (2003) N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC), a novel, orally effectice vanilloid receptor 1 antagonist with analgesic properties: I. in vitro characterization and pharmacokinetic properties. J. Pharmacol. Exp. Ther. 306, 377-386.   DOI
5 Voight, E. A. and Kort, M. E. (2010) Transient receptor potential vanilloid- 1 antagonists: a survey of recent patent literature. Expert Opin. Ther. Pat. 20, 1107-1122.   DOI
6 Wang, Q. J., Fang, T. W., Fenick, D., Garfield, S., Bienfait, B., Marquez, V. E. and Blumberg, P. M. (2000) The lipophilicity of phorbol esters as a critical factor in determining the pattern of translocation of protein kinase C delta fused to green fluorescent protein. J. Biol. Chem. 275, 12136-12146.   DOI
7 Wang, Y., Toth, A., Tran, R., Szabo, T., Welter, J. D., Blumberg, P. M., Lee, J., Kang, S.-U., Lim, J.-O. and Lee, J. (2003) High-affinity partial agonists of the vanilloid receptor. Mol. Pharmacol. 64, 325-333.   DOI
8 Barber, M. N., Sampey, D. B. and Widdop, R. E. (1999) $AT_2$ receptor stimulation enhances antihypertensive effect of $AT_1$ receptor antagonist in hypertensive rats. Hypertension 34, 1112-1116.   DOI
9 Bertino, J. R., Levitt, M., McCullough, J. L. and Chabner, B. (1971) New approaches to chemotherapy with folate antagonists: use of leucovorin "rescue" and enzymic folate depletion. Ann. N. Y. Acad. Sci. 186, 486-495.   DOI
10 Bevan, S., Hothi, S., Hughes, G., James, I. F., Rang, H. P., Shah, K., Walpole, C. S. and Yeats, J. C. (1992) Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin. Br. J. Pharmacol. 107, 544-552.   DOI
11 Bevan, S., Quallo, T. and Andersson, D. A. (2014) TRPV1. Handb. Exp. Pharmacol. 222, 207-245.   DOI
12 Blumberg, P. M., Pearce, L. V. and Lee, J. (2011) TRPV1 activation is not an all-or-none event: TRPV1 partial agonism/antagonism and its regulatory modulation. Curr. Top. Med. Chem. 11, 2151-2158.   DOI
13 Braun, D. C., Cao, Y., Wang, S., Garfield, S. H., Hur, G. M. and Blumberg, P. M. (2005) Role of phorbol ester localization in determining protein kinase C or RasGRP3 translocation: real-time analysis using fluorescent ligands and proteins. Mol. Cancer Ther. 4, 141-150.
14 Broad, L. M., Keding, S. J. and Blanco, M. J. (2008) Recent progress in the development of selective TRPV1 antagonists for pain. Curr. Top. Med. Chem. 8, 1431-1441.   DOI
15 Busker, R. W. and van Helden, H. P. (1998) Toxicologic evaluation of pepper spray as a possible weapon for the Dutch police force: risk assessment and efficacy. Am. J. Forensic Med. Pathol. 19, 309-316.   DOI
16 Feng, Z., Pearce, L. V., Xu, X., Yang, X., Yang, P., Blumberg, P. M. and Xie, X. Q. (2015) Structural insight into tetrameric hTRPV1 from homology modeling, molecular docking, molecular dynamics simulation, virtual screening, and bioassay validations. J. Chem. Inf. Model. 55, 572-588.   DOI
17 Winter, Z., Buhala, A., Otvos, F., Josvay, K., Vizler, C., Dombi, G. Szakonyi, G. and Olah, Z. (2013) Functionally important amino acid residues in the transient receptor potential vanilloid 1 (TRPV1) ion channel--an overview of the current mutational data. Mol. Pain 9, 30.
18 Wrigglesworth, R., Walpole, C. S. J., Bevan, S., Campbell, E. A., Dray, A., Hughes, G. A., James, I., Masdin, K. J. and Winter, J. (1996) Analogues of capsaicin with agonist activity as novel analgesic agents: structure-activity studies. 4. Potent, orally active analgesics. J. Med. Chem. 39, 4942-4951.   DOI
19 Cao, E., Liao, M., Cheng, Y. and Julius, D. (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504, 113-118.   DOI
20 Cui, M., Gosu, V., Basith, S., Hong, S. and Choi, S. (2016) Polymodal transient receptor potential vanilloid type 1 nocisensor: structure, modulators, and therapeutic applications. Adv. Prot. Chem. Struct. Biol. 104, 81-125.   DOI
21 Gavva, N. R., Tamir, R., Qu, Y., Klionsky, L., Zhang, T. J., Immke. D., Wang, J., Zhu, D.; Vanderah, T. W., Porreca, F., Doherty, E. M., Norman, M. H., Wild, K. D., Bannon, A. W., Louis, J.-C. and Treanor, J. J. S. (2005) AMG 9810 [(E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties. J. Pharmacol. Exp. Ther. 313, 474-484.   DOI
22 Jung, J., Hwang, S. W., Kwak, J., Lee, S. Y., Kang, C. J., Kim, W. B., Kim, D. and Oh, U. (1999) Capsaicin bind to the intracellular domain of the capsaicin-activated ion channel. J. Neurosci. 19, 529-538.   DOI
23 Kyle, D. J. and Tafesse, L. (2006) TRPV1 antagonists: a survey of the patent literature. Expert Opin. Ther. Pat. 16, 977-996.   DOI
24 Lazar, J., Braun, D. C., Toth, A., Wang, Y., Pearce, L. V., Pavlyukovets, V. A., Blumberg, P. M., Garfield S. H., Wincovitch, S., Choi, H. K. and Lee, J. (2006) Kinetics of penetration influence the apparent potency of vanilloids on TRPV1. Mol. Pharmacol. 69, 1166-1173.   DOI
25 Nagy, I., Friston, D., Valente, J. S., Torres Perez, J. V. and Andreou, A. P. (2014) Pharmacology of the capsaicin receptor, transient receptor potential vanilloid type-1 ion channel. Prog. Drug Res. 68, 39-76.
26 Lee, J. H., Lee, Y., Ryu, H., Kang, D. W., Lee, J., Lazar, J., Pearce, L. V., Pavlyukovets, V. A., Blumberg, P. M. and Choi, S. (2011) Structural insights into transient receptor potential vanilloid type 1 (TRPV1) from homology modeling, flexible docking, and mutational studies. J. Comput. Aided Mol. Des. 25, 317-327.   DOI
27 Lee, Y., Hong, S., Cui, M., Sharma, P. K., Lee, J. and Choi, S. (2015) Transient receptor potential vanilloid type 1 antagonists: a patent review (2011-2014). Expert Opin. Ther. Pat. 25, 291-318.   DOI
28 Liu, L., Lo, Y. C., Chen, I. J. and Simon, S. A. (1997) The responses of rat trigeminal ganglion neurons to capsaicin and two nonpungent vanilloid receptor agonists, olvanil and glyceryl nonamide. J. Neurosci. 17, 4101-4111.   DOI
29 Nutt, D. J. (2010) Antagonist-agonist combinations as therapies for heroin addiction: back to the future? J. Psychopharm. 24, 141-145.   DOI
30 Pearce, L. V., Toth, A., Ryu, H., Kang, D. W., Choi, H.-K., Jin, M.-K., Lee, J., Blumberg, P. M. (2008) Differential modulation of agonist and antagonist structure activity relations for rat TRPV1 by cyclosporin A and other protein phosphatase inhibitors. Naunyn Schmiedebergs Arch. Pharmacol. 377, 149-157.   DOI
31 Pingle, S. C., Matta, J. A. and Ahern, G. P. (2007) Capsaicin receptor: TRPV1 a promiscuous TRP channel. Handb. Exp. Pharmacol. 179, 155-171.   DOI
32 Rohacs, T. (2015) Phosphoinositide regulation of TRPV1 revisited. Pflugers Arch. 467, 1851-1869.   DOI