Browse > Article
http://dx.doi.org/10.4062/biomolther.2018.131

Deficiency of Sphingosine-1-Phosphate Receptor 2 (S1P2) Attenuates Bleomycin-Induced Pulmonary Fibrosis  

Park, Soo-Jin (College of Pharmacy, Pusan National University)
Im, Dong-Soon (College of Pharmacy, Pusan National University)
Publication Information
Biomolecules & Therapeutics / v.27, no.3, 2019 , pp. 318-326 More about this Journal
Abstract
Sphingosine 1-phosphate (S1P) levels are often found to be elevated in serum, bronchoalveolar lavage, and lung tissue of idiopathic pulmonary fibrosis patients and experimental mouse models. Although the roles of sphingosine kinase 1 and S1P receptors have been implicated in fibrosis, the underlying mechanism of fibrosis via Sphingosine 1-phosphate receptor 2 ($S1P_2$) has not been fully investigated. Therefore, in this study, the roles of $S1P_2$ in lung inflammation and fibrosis was investigated by means of a bleomycin-induced lung fibrosis model and lung epithelial cells. Bleomycin was found to induce lung inflammation on day 7 and fibrosis on day 28 of treatment. On the $7^{th}$ day after bleomycin administration, $S1P_2$ deficient mice exhibited significantly less pulmonary inflammation, including cell infiltration and pro-inflammatory cytokine induction, than the wild type mice. On the $28^{th}$ day after bleomycin treatment, severe inflammation and fibrosis were observed in lung tissues from wild type mice, while lung tissues from $S1P_2$ deficient mice showed less inflammation and fibrosis. Increase in TGF-${\beta}1$-induced extracellular matrix accumulation and epithelial-mesenchymal transition were inhibited by JTE-013, a $S1P_2$ antagonist, in A549 lung epithelial cells. Taken together, pro-inflammatory and pro-fibrotic functions of $S1P_2$ were elucidated using a bleomycin-induced fibrosis model. Notably, $S1P_2$ was found to mediate epithelial-mesenchymal transition in fibrotic responses. Therefore, the results of this study indicate that $S1P_2$ could be a promising therapeutic target for the treatment of pulmonary fibrosis.
Keywords
Fibrosis; Inflammation; Lung; Sphingosine 1-phosphate; $S1P_2$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Milara, J., Navarro, R., Juan, G., Peiro, T., Serrano, A., Ramon, M., Morcillo, E. and Cortijo, J. (2012) Sphingosine-1-phosphate is increased in patients with idiopathic pulmonary fibrosis and mediates epithelial to mesenchymal transition. Thorax 67, 147-156.   DOI
2 Murakami, K., Kohno, M., Kadoya, M., Nagahara, H., Fujii, W., Seno, T., Yamamoto, A., Oda, R., Fujiwara, H., Kubo, T., Morita, S., Nakada, H., Hla, T. and Kawahito, Y. (2014) Knock out of S1P3 receptor signaling attenuates inflammation and fibrosis in bleomycin-induced lung injury mice model. PLoS ONE 9, e106792.   DOI
3 Park, S. J. and Im, D. S. (2017) Sphingosine 1-phosphate receptor modulators and drug discovery. Biomol. Ther. (Seoul) 25, 80-90.   DOI
4 Shea, B. S., Brooks, S. F., Fontaine, B. A., Chun, J., Luster, A. D. and Tager, A. M. (2010) Prolonged exposure to sphingosine 1-phosphate receptor-1 agonists exacerbates vascular leak, fibrosis, and mortality after lung injury. Am. J. Respir. Cell Mol. Biol. 43, 662-673.   DOI
5 Sobel, K., Menyhart, K., Killer, N., Renault, B., Bauer, Y., Studer, R., Steiner, B., Bolli, M. H., Nayler, O. and Gatfield, J. (2013) Sphingosine 1-phosphate (S1P) receptor agonists mediate pro-fibrotic responses in normal human lung fibroblasts via S1P2 and S1P3 receptors and Smad-independent signaling. J. Biol. Chem. 288, 14839-14851.   DOI
6 Sonnylal, S., Shi-Wen, X., Leoni, P., Naff, K., Van Pelt, C. S., Nakamura, H., Leask, A., Abraham, D., Bou-Gharios, G. and de Crombrugghe, B. (2010) Selective expression of connective tissue growth factor in fibroblasts in vivo promotes systemic tissue fibrosis. Arthritis Rheum. 62, 1523-1532.   DOI
7 Willis, B. C. and Borok, Z. (2007) TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 293, L525-534.   DOI
8 Zhao, J., Okamoto, Y., Asano, Y., Ishimaru, K., Aki, S., Yoshioka, K., Takuwa, N., Wada, T., Inagaki, Y., Takahashi, C., Nishiuchi, T. and Takuwa, Y. (2018) Sphingosine-1-phosphate receptor-2 facilitates pulmonary fibrosis through potentiating IL-13 pathway in macrophages. PLoS ONE 13, e0197604.   DOI
9 Willis, B. C., Liebler, J. M., Luby-Phelps, K., Nicholson, A. G., Crandall, E. D., du Bois, R. M. and Borok, Z. (2005) Induction of epithelialmesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am. J. Pathol. 166, 1321-1332.   DOI
10 Wynn, T. A. and Ramalingam, T. R. (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028-1040.   DOI
11 Ikeda, H., Watanabe, N., Ishii, I., Shimosawa, T., Kume, Y., Tomiya, T., Inoue, Y., Nishikawa, T., Ohtomo, N., Tanoue, Y., Iitsuka, S., Fujita, R., Omata, M., Chun, J. and Yatomi, Y. (2009) Sphingosine 1-phosphate regulates regeneration and fibrosis after liver injury via sphingosine 1-phosphate receptor 2. J. Lipid Res. 50, 556-564.   DOI
12 Berend, N. (2014) Respiratory disease and respiratory physiology: putting lung function into perspective interstitial lung disease. Respirology 19, 952-959.   DOI
13 Bourke, S. J. (2006) Interstitial lung disease: progress and problems. Postgraduate Med. J. 82, 494-499.   DOI
14 Dhami, R., He, X. and Schuchman, E. H. (2010) Acid sphingomyelinase deficiency attenuates bleomycin-induced lung inflammation and fibrosis in mice. Cell. Physiol. Biochem. 26, 749-760.   DOI
15 Kage, H. and Borok, Z. (2012) EMT and interstitial lung disease: a mysterious relationship. Curr. Opin. Pulm. Med. 18, 517-523.   DOI
16 Kalluri, R. and Neilson, E. G. (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776-1784.   DOI
17 Li, C., Jiang, X., Yang, L., Liu, X., Yue, S. and Li, L. (2009) Involvement of sphingosine 1-phosphate (SIP)/S1P3 signaling in cholestasis-induced liver fibrosis. Am. J. Pathol. 175, 1464-1472.   DOI
18 Kono, M., Belyantseva, I. A., Skoura, A., Frolenkov, G. I., Starost, M. F., Dreier, J. L., Lidington, D., Bolz, S. S., Friedman, T. B., Hla, T. and Proia, R. L. (2007a) Deafness and stria vascularis defects in S1P2 receptor-null mice. J. Biol. Chem. 282, 10690-10696.   DOI
19 Kono, Y., Nishiuma, T., Nishimura, Y., Kotani, Y., Okada, T., Nakamura, S. and Yokoyama, M. (2007b) Sphingosine kinase 1 regulates differentiation of human and mouse lung fibroblasts mediated by TGF-beta1. Am. J. Respir. Cell Mol. Biol. 37, 395-404.   DOI
20 Leask, A. and Abraham, D. J. (2004) TGF-beta signaling and the fibrotic response. FASEB J. 18, 816-827.   DOI
21 Li, C., Zheng, S., You, H., Liu, X., Lin, M., Yang, L. and Li, L. (2011) Sphingosine 1-phosphate (S1P)/S1P receptors are involved in human liver fibrosis by action on hepatic myofibroblasts motility. J. Hepatol. 54, 1205-1213.   DOI
22 Masszi, A., Speight, P., Charbonney, E., Lodyga, M., Nakano, H., Szaszi, K. and Kapus, A. (2010) Fate-determining mechanisms in epithelial-myofibroblast transition: major inhibitory role for Smad3. J. Cell Biol. 188, 383-399.   DOI