Browse > Article
http://dx.doi.org/10.4062/biomolther.2018.092

Epicatechin Prevents Methamphetamine-Induced Neuronal Cell Death via Inhibition of ER Stress  

Kang, Youra (College of Pharmacy, Keimyung University)
Lee, Ji-Ha (College of Pharmacy, Keimyung University)
Seo, Young Ho (College of Pharmacy, Keimyung University)
Jang, Jung-Hee (Department of Pharmacology, School of Medicine, Keimyung University)
Jeong, Chul-Ho (College of Pharmacy, Keimyung University)
Lee, Sooyeun (College of Pharmacy, Keimyung University)
Jeong, Gil-Saeng (College of Pharmacy, Keimyung University)
Park, Byoungduck (College of Pharmacy, Keimyung University)
Publication Information
Biomolecules & Therapeutics / v.27, no.2, 2019 , pp. 145-151 More about this Journal
Abstract
Methamphetamine (METH) acts strongly on the nervous system and damages neurons and is known to cause neurodegenerative diseases such as Alzheimer's and Parkinson's. Flavonoids, polyphenolic compounds present in green tea, red wine and several fruits exhibit antioxidant properties that protect neurons from oxidative damage and promote neuronal survival. Especially, epicatechin (EC) is a powerful flavonoid with antibacterial, antiviral, antitumor and antimutagenic effects as well as antioxidant effects. We therefore investigated whether EC could prevent METH-induced neurotoxicity using HT22 hippocampal neuronal cells. EC reduced METH-induced cell death of HT22 cells. In addition, we observed that EC abrogated the activation of ERK, p38 and inhibited the expression of CHOP and DR4. EC also reduced METH-induced ROS accumulation and MMP. These results suggest that EC may protect HT22 hippocampal neurons against METH-induced cell death by reducing ER stress and mitochondrial damage.
Keywords
Epicatechin; Methamphetamine; Neuroprotection;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jayanthi, S., Deng, X., Noailles, P. A., Ladenheim, B. and Cadet, J. L. (2004) Methamphetamine induces neuronal apoptosis via crosstalks between endoplasmic reticulum and mitochondria-dependent death cascades. FASEB J. 18, 238-251.   DOI
2 Jayanthi, S., Ladenheim, B. and Cadet, J. L. (1998) Methamphetamine- induced changes in antioxidant enzymes and lipid peroxidation in copper/zinc-superoxide dismutase transgenic mice. Ann. N. Y. Acad. Sci. 844, 92-102.   DOI
3 Jia, J., Xiao, Y., Wang, W., Qing, L., Xu, Y., Song, H., Zhen, X., Ao, G., Alkayed, N. J. and Cheng, J. (2013) Differential mechanisms underlying neuroprotection of hydrogen sulfide donors against oxidative stress. Neurochem. Int. 62, 1072-1078.   DOI
4 Katiyar, S. K., Agarwal, R. and Mukhtar, H. (1994) Inhibition of spontaneous and photo-enhanced lipid peroxidation in mouse epidermal microsomes by epicatechin derivatives from green tea. Cancer Lett. 79, 61-66.   DOI
5 Kempf, S. J., Buratovic, S., von Toerne, C., Moertl, S., Stenerlow, B., Hauck, S. M., Atkinson, M. J., Eriksson, P. and Tapio, S. (2014) Ionising radiation immediately impairs synaptic plasticity-associated cytoskeletal signalling pathways in HT22 cells and in mouse brain: an in vitro/in vivo comparison study. PLoS ONE 9, e110464.   DOI
6 Lauro, C., Cipriani, R., Catalano, M., Trettel, F., Chece, G., Brusadin, V., Antonilli, L., van Rooijen, N., Eusebi, F., Fredholm, B. B. and Limatola, C. (2010) Adenosine A1 receptors and microglial cells mediate CX3CL1-induced protection of hippocampal neurons against Glu-induced death. Neuropsychopharmacology 35, 1550-1559.   DOI
7 Lee, K. Y., Jeong, E. J., Huh, J., Cho, N., Kim, T. B., Jeon, B. J., Kim, S. H., Kim, H. P. and Sung, S. H. (2012) Cognition-enhancing and neuroprotective activities of the standardized extract of Betula platyphylla bark and its major diarylheptanoids. Phytomedicine 19, 1315-1320.   DOI
8 Meredith, C. W., Jaffe, C., Ang-Lee, K. and Saxon, A. J. (2005) Implications of chronic methamphetamine use: a literature review. Harv. Rev. Psychiatry 13, 141-154.   DOI
9 Miyatake, M., Narita, M., Shibasaki, M., Nakamura, A. and Suzuki, T. (2005) Glutamatergic neurotransmission and protein kinase C play a role in neuron-glia communication during the development of methamphetamine-induced psychological dependence. Eur. J. Neurosci. 22, 1476-1488.   DOI
10 Murphy, T. H., Miyamoto, M., Sastre, A., Schnaar, R. L. and Coyle, J. T. (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2, 1547-1558.   DOI
11 Nakagawa, T. and Yokozawa, T. (2002) Direct scavenging of nitric oxide and superoxide by green tea. Food Chem. Toxicol. 40, 1745-1750.   DOI
12 O'Dell, S. J. and Marshall, J. F. (2005) Neurotoxic regimens of methamphetamine induce persistent expression of phospho-c-Jun in somatosensory cortex and substantia nigra. Synapse 55, 137-147.   DOI
13 Ono, Y., Shimazawa, M., Ishisaka, M., Oyagi, A., Tsuruma, K. and Hara, H. (2012) Imipramine protects mouse hippocampus against tunicamycin-induced cell death. Eur. J. Pharmacol. 696, 83-88.   DOI
14 Pallast, S., Arai, K., Wang, X., Lo, E. H. and van Leyen, K. (2009) 12/15-Lipoxygenase targets neuronal mitochondria under oxidative stress. J. Neurochem. 111, 882-889.   DOI
15 Park, S. K., Sanders, B. G. and Kline, K. (2010) Tocotrienols induce apoptosis in breast cancer cell lines via an endoplasmic reticulum stress-dependent increase in extrinsic death receptor signaling. Breast Cancer Res. Treat. 124, 361-375.   DOI
16 Ravindran, J., Gupta, N., Agrawal, M., Bala Bhaskar, A. S. and Lakshmana Rao, P. V. (2011) Modulation of ROS/MAPK signaling pathways by okadaic acid leads to cell death via, mitochondrial mediated caspase-dependent mechanism. Apoptosis 16, 145-161.   DOI
17 Marshall, J. F., Belcher, A. M., Feinstein, E. M. and O'Dell, S. J. (2007) Methamphetamine-induced neural and cognitive changes in rodents. Addiction 102 Suppl 1, 61-69.   DOI
18 Prasad, S., Yadav, V. R., Ravindran, J. and Aggarwal, B. B. (2011) ROS and CHOP are critical for dibenzylideneacetone to sensitize tumor cells to TRAIL through induction of death receptors and downregulation of cell survival proteins. Cancer Res. 71, 538-549.   DOI
19 Pubill, D., Canudas, A. M., Pallas, M., Camins, A., Camarasa, J. and Escubedo, E. (2003) Different glial response to methamphetamineand methylenedioxymethamphetamine-induced neurotoxicity. Naunyn Schmiedebergs Arch. Pharmacol. 367, 490-499.   DOI
20 Raudensky, J. and Yamamoto, B. K. (2007) Effects of chronic unpredictable stress and methamphetamine on hippocampal glutamate function. Brain Res. 1135, 129-135.   DOI
21 Refaat, A., Abd-Rabou, A. and Reda, A. (2014) TRAIL combinations: the new 'trail' for cancer therapy (review). Oncol. Lett. 7, 1327-1332.   DOI
22 Salminen, A., Kauppinen, A., Suuronen, T., Kaarniranta, K. and Ojala, J. (2009) ER stress in Alzheimer's disease: a novel neuronal trigger for inflammation and Alzheimer's pathology. J. Neuroinflammation 6, 41.   DOI
23 Talloczy, Z., Martinez, J., Joset, D., Ray, Y., Gacser, A., Toussi, S., Mizushima, N., Nosanchuk, J. D., Goldstein, H., Loike, J., Sulzer, D. and Santambrogio, L. (2008) Methamphetamine inhibits antigen processing, presentation, and phagocytosis. PLoS Pathog. 4, e28.   DOI
24 Shimazu, K., Zhao, M., Sakata, K., Akbarian, S., Bates, B., Jaenisch, R. and Lu, B. (2006) NT-3 facilitates hippocampal plasticity and learning and memory by regulating neurogenesis. Learn. Mem. 13, 307-315.   DOI
25 Simonian, N. A. and Coyle, J. T. (1996) Oxidative stress in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 36, 83-106.   DOI
26 Son, Y., Kim, S., Chung, H. T. and Pae, H. O. (2013) Reactive oxygen species in the activation of MAP kinases. Methods Enzymol. 528, 27-48.   DOI
27 Stanciu, M., Wang, Y., Kentor, R., Burke, N., Watkins, S., Kress, G., Reynolds, I., Klann, E., Angiolieri, M. R., Johnson, J. W. and De-Franco, D. B. (2000) Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J. Biol. Chem. 275, 12200-12206.   DOI
28 Sung, B., Ravindran, J., Prasad, S., Pandey, M. K. and Aggarwal, B. B. (2010) Gossypol induces death receptor-5 through activation of the ROS-ERK-CHOP pathway and sensitizes colon cancer cells to TRAIL. J. Biol. Chem. 285, 35418-35427.   DOI
29 Walsh, S. L. and Wagner, G. C. (1992) Motor impairments after methamphetamine-induced neurotoxicity in the rat. J. Pharmacol. Exp. Ther. 263, 617-626.
30 Yang, E. J., Park, G. H. and Song, K. S. (2013) Neuroprotective effects of liquiritigenin isolated from licorice roots on glutamate-induced apoptosis in hippocampal neuronal cells. Neurotoxicology 39, 114-123.   DOI
31 Debette, S. (2013) Vascular risk factors and cognitive disorders. Rev. Neurol. (Paris) 169, 757-764.   DOI
32 Yoon, M. J., Kang, Y. J., Kim, I. Y., Kim, E. H., Lee, J. A., Lim, J. H., Kwon, T. K. and Choi, K. S. (2013) Monensin, a polyether ionophore antibiotic, overcomes TRAIL resistance in glioma cells via endoplasmic reticulum stress, DR5 upregulation and c-FLIP downregulation. Carcinogenesis 34, 1918-1928.   DOI
33 Apostolides, Z. and Weisburger, J. H. (1995) Screening of tea clones for inhibition of PhIP mutagenicity. Mutat. Res. 326, 219-225.   DOI
34 Barr, A. M., Panenka, W. J., MacEwan, G. W., Thornton, A. E., Lang, D. J., Honer, W. G. and Lecomte, T. (2006) The need for speed: an update on methamphetamine addiction. J. Psychiatry Neurosci. 31, 301-313.
35 Belt, E. J., Stockmann, H. B., Delis-van Diemen, P. M., Bril, H., Tijssen, M., van Essen, H. F., Heymans, M. W., Belien, J. A., Carvalho, B., Cillessen, S. A. and Meijer, G. A. (2014) Expression of apoptosis regulating proteins identifies stage II and III colon cancer patients with high risk of recurrence. J. Surg. Oncol. 109, 255-265.   DOI
36 Bhattacharyya, A., Mandal, D., Lahiry, L., Sa, G. and Das, T. (2004) Black tea protects immunocytes from tumor-induced apoptosis by changing Bcl-2/Bax ratio. Cancer Lett. 209, 147-154.   DOI
37 Blount, J. W., Ferruzzi, M., Raftery, D., Pasinetti, G. M. and Dixon, R. A. (2012) Enzymatic synthesis of substituted epicatechins for bioactivity studies in neurological disorders. Biochem. Biophys. Res. Commun. 417, 457-461.   DOI
38 Chhunchha, B., Fatma, N., Kubo, E., Rai, P., Singh, S. P. and Singh, D. P. (2013) Curcumin abates hypoxia-induced oxidative stress based-ER stress-mediated cell death in mouse hippocampal cells (HT22) by controlling Prdx6 and NF-${\kappa}B$ regulation. Am. J. Physiol. Cell Physiol. 304, C636-C655.   DOI
39 Cuevas, E., Limon, D., Perez-Severiano, F., Diaz, A., Ortega, L., Zenteno, E. and Guevara, J. (2009) Antioxidant effects of epicatechin on the hippocampal toxicity caused by amyloid-beta 25-35 in rats. Eur. J. Pharmacol. 616, 122-127.   DOI
40 Davidson, C., Gow, A. J., Lee, T. H. and Ellinwood, E. H. (2001) Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res. Brain Res. Rev. 36, 1-22.   DOI
41 Eisch, A. J., O'Dell, S. J. and Marshall, J. F. (1996) Striatal and cortical NMDA receptors are altered by a neurotoxic regimen of methamphetamine. Synapse 22, 217-225.   DOI
42 Geetha, T., Garg, A., Chopra, K. and Pal Kaur, I. (2004) Delineation of antimutagenic activity of catechin, epicatechin and green tea extract. Mutat. Res. 556, 65-74.   DOI
43 Ito, Y., Yamada, M., Tanaka, H., Aida, K., Tsuruma, K., Shimazawa, M., Hozumi, I., Inuzuka, T., Takahashi, H. and Hara, H. (2009) Involvement of CHOP, an ER-stress apoptotic mediator, in both human sporadic ALS and ALS model mice. Neurobiol. Dis. 36, 470-476.   DOI
44 Giovanni, A., Liang, L. P., Hastings, T. G. and Zigmond, M. J. (1995) Estimating hydroxyl radical content in rat brain using systemic and intraventricular salicylate: impact of methamphetamine. J. Neurochem. 64, 1819-1825.   DOI
45 Gupta, S. C., Francis, S. K., Nair, M. S., Mo, Y. Y. and Aggarwal, B. B. (2013a) Azadirone, a limonoid tetranortriterpene, induces death receptors and sensitizes human cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) through a p53 protein-independent mechanism: evidence for the role of the ROS-ERK-CHOP-death receptor pathway. J. Biol. Chem. 288, 32343-32356.   DOI
46 Gupta, S. C., Francis, S. K., Nair, M. S., Mo, Y. Y. and Aggarwal, B. B. (2013b) Azadirone, a limonoid tetranortriterpene, induces death receptors and sensitizes human cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) through a p53 protein-independent mechanism: evidence for the role of the ROS-ERK-CHOP-death receptor pathway. J. Biol. Chem. 288, 32343-32356.   DOI
47 Hanasaki, Y., Ogawa, S. and Fukui, S. (1994) The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic. Biol. Med. 16, 845-850.   DOI
48 Hanson, G. R., Rau, K. S. and Fleckenstein, A. E. (2004) The methamphetamine experience: a NIDA partnership. Neuropharmacology 47 Suppl 1, 92-100.
49 Jayanthi, S., Deng, X., Bordelon, M., McCoy, M. T. and Cadet, J. L. (2001) Methamphetamine causes differential regulation of prodeath and anti-death Bcl-2 genes in the mouse neocortex. FASEB J. 15, 1745-1752.   DOI