Browse > Article
http://dx.doi.org/10.4062/biomolther.2018.175

Integrative Omics Reveals Metabolic and Transcriptomic Alteration of Nonalcoholic Fatty Liver Disease in Catalase Knockout Mice  

Na, Jinhyuk (College of Pharmacy, Korea University)
Choi, Soo An (College of Pharmacy, Korea University)
Khan, Adnan (College of Pharmacy, Korea University)
Huh, Joo Young (College of Pharmacy, Chonnam National University)
Piao, Lingjuan (Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University)
Hwang, Inah (Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University)
Ha, Hunjoo (Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University)
Park, Youngja H (College of Pharmacy, Korea University)
Publication Information
Biomolecules & Therapeutics / v.27, no.2, 2019 , pp. 134-144 More about this Journal
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) has increased with the incidence of obesity; however, the underlying mechanisms are unknown. In this study, high-resolution metabolomics (HRM) along with transcriptomics were applied on animal models to draw a mechanistic insight of NAFLD. Wild type (WT) and catalase knockout (CKO) mice were fed with normal fat diet (NFD) or high fat diet (HFD) to identify the changes in metabolic and transcriptomic profiles caused by catalase gene deletion in correspondence with HFD. Integrated omics analysis revealed that cholic acid and $3{\beta}$, $7{\alpha}$-dihydroxy-5-cholestenoate along with cyp7b1 gene involved in primary bile acid biosynthesis were strongly affected by HFD. The analysis also showed that CKO significantly changed all-trans-5,6-epoxy-retinoic acid or all-trans-4-hydroxy-retinoic acid and all-trans-4-oxo-retinoic acid along with cyp3a41b gene in retinol metabolism, and ${\alpha}/{\gamma}$-linolenic acid, eicosapentaenoic acid and thromboxane A2 along with ptgs1 and tbxas1 genes in linolenic acid metabolism. Our results suggest that dysregulated primary bile acid biosynthesis may contribute to liver steatohepatitis, while up-regulated retinol metabolism and linolenic acid metabolism may have contributed to oxidative stress and inflammatory phenomena in our NAFLD model created using CKO mice fed with HFD.
Keywords
Catalase; Nonalcoholic fatty liver disease; Liver metabolism; Inflammation; Metabolomics; Transcriptomics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Stiles, A. R., McDonald, J. G., Bauman, D. R. and Russell, D. W. (2009) CYP7B1: one cytochrome P450, two human genetic diseases, and multiple physiological functions. J. Biol. Chem. 284, 28485-28489.   DOI
2 Videla, L. A., Rodrigo, R., Orellana, M., Fernandez, V., Tapia, G., Quinones, L., Varela, N., Contreras, J., Lazarte, R., Csendes, A., Rojas, J., Maluenda, F., Burdiles, P., Diaz, J. C., Smok, G., Thielemann, L. and Poniachik, J. (2004) Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clin. Sci. (Lond.) 106, 261-268.   DOI
3 Want, E. J., O'Maille, G., Smith, C. A., Brandon, T. R., Uritboonthai, W., Qin, C., Trauger, S. A. and Siuzdak, G. (2006) Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal. Chem. 78, 743-752.   DOI
4 Wolf, S., Schmidt, S., Muller-Hannemann, M. and Neumann, S. (2010) In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics 11, 148.   DOI
5 Yamato, M., Shiba, T., Ide, T., Seri, N., Kudo, W., Ando, M., Yamada, K., Kinugawa, S. and Tsutsui, H. (2012) High-fat diet-induced obesity and insulin resistance were ameliorated via enhanced fecal bile acid excretion in tumor necrosis factor-alpha receptor knockout mice. Mol. Cell. Biochem. 359, 161-167.   DOI
6 Younossi, Z. M., Stepanova, M., Afendy, M., Fang, Y., Younossi, Y., Mir, H. and Srishord, M. (2011) Changes in the prevalence of the most common causes of chronic liver diseases in the United States from 1988 to 2008. Clin. Gastroenterol. Hepatol. 9, 524-530.e1; quiz e60.   DOI
7 Yu, T., Park, Y., Johnson, J. M. and Jones, D. P. (2009) apLCMS-adaptive processing of high-resolution LC/MS data. Bioinformatics 25, 1930-1936.   DOI
8 Yuan, L. and Bambha, K. (2015) Bile acid receptors and nonalcoholic fatty liver disease. World J. Hepatol. 7, 2811-2818.   DOI
9 Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M. and Burcelin, R. (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470-1481.   DOI
10 Arguello, G., Balboa, E., Arrese, M. and Zanlungo, S. (2015) Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim. Biophys. Acta 1852, 1765-1778.   DOI
11 Cavill, R., Jennen, D., Kleinjans, J. and Briede, J. J. (2016) Transcriptomic and metabolomic data integration. Brief. Bioinform. 17, 891-901.   DOI
12 Hassan, K., Bhalla, V., El Regal, M. E. and A-Kader, H. H. (2014) Nonalcoholic fatty liver disease: a comprehensive review of a growing epidemic. World J. Gastroenterol. 20, 12082-12101.   DOI
13 Clarke, G. M., Anderson, C. A., Pettersson, F. H., Cardon, L. R., Morris, A. P. and Zondervan, K. T. (2011) Basic statistical analysis in genetic case-control studies. Nat. Protoc. 6, 121-133.   DOI
14 Darwish, R. S., Amiridze, N. and Aarabi, B. (2007) Nitrotyrosine as an oxidative stress marker: evidence for involvement in neurologic outcome in human traumatic brain injury. J. Trauma 63, 439-442.   DOI
15 Gao, Y., Lu, Y., Huang, S., Gao, L., Liang, X., Wu, Y., Wang, J., Huang, Q., Tang, L., Wang, G., Yang, F., Hu, S., Chen, Z., Wang, P., Jiang, Q., Huang, R., Xu, Y., Yang, X. and Ong, C. N. (2014) Identifying early urinary metabolic changes with long-term environmental exposure to cadmium by mass-spectrometry-based metabolomics. Environ. Sci. Technol. 48, 6409-6418.   DOI
16 Gomez-Cabrero, D., Abugessaisa, I., Maier, D., Teschendorff, A., Merkenschlager, M., Gisel, A., Ballestar, E., Bongcam-Rudloff, E., Conesa, A. and Tegner, J. (2014) Data integration in the era of omics: current and future challenges. BMC Syst. Biol. 8 Suppl 2, I1.
17 Hariri, N. and Thibault, L. (2010) High-fat diet-induced obesity in animal models. Nutr. Res. Rev. 23, 270-299.   DOI
18 Horgan, R. P. and Kenny, L. C. (2011) 'Omic' technologies: genomics, transcriptomics, proteomics and metabolomics. TOG 13, 189-195.   DOI
19 Hwang, I., Lee, J., Huh, J. Y., Park, J., Lee, H. B., Ho, Y. S. and Ha, H. (2012) Catalase deficiency accelerates diabetic renal injury through peroxisomal dysfunction. Diabetes 61, 728-738.   DOI
20 Kuehl, F. A., Jr. and Egan, R. W. (1980) Prostaglandins, arachidonic acid, and inflammation. Science 210, 978-984.   DOI
21 Li, T., Francl, J. M., Boehme, S. and Chiang, J. Y. (2013) Regulation of cholesterol and bile acid homeostasis by the cholesterol 7alphahydroxylase/steroid response element-binding protein 2/microRNA-33a axis in mice. Hepatology 58, 1111-1121.   DOI
22 Nakahata, N. (2008) Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacol. Ther. 118, 18-35.   DOI
23 Lin, S., Thomas, T., Storlien, L. and Huang, X. (2000) Development of high fat diet-induced obesity and leptin resistance in C 57 Bl/6 J mice. Int. J. Obes. Relat. Metab. Disord. 24, 639-646.   DOI
24 Machado, M. V., Michelotti, G. A., Xie, G., Almeida Pereira, T., Boursier, J., Bohnic, B., Guy, C. D. and Diehl, A. M. (2015) Mouse models of diet-induced nonalcoholic steatohepatitis reproduce the heterogeneity of the human disease. PLoS ONE 10, e0127991.   DOI
25 Mouzaki, M., Wang, A. Y., Bandsma, R., Comelli, E. M., Arendt, B. M., Zhang, L., Fung, S., Fischer, S. E., McGilvray, I. G. and Allard, J. P. (2016) Bile acids and dysbiosis in non-alcoholic fatty liver disease. PLoS ONE 11, e0151829.   DOI
26 Norris, A. W., Chen, L., Fisher, S. J., Szanto, I., Ristow, M., Jozsi, A. C., Hirshman, M. F., Rosen, E. D., Goodyear, L. J., Gonzalez, F. J., Spiegelman, B. M. and Kahn, C. R. (2003) Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. J. Clin. Invest. 112, 608-618.   DOI
27 Obuchowski, N. A. and Bullen, J. A. (2018) Receiver operating characteristic (ROC) curves: review of methods with applications in diagnostic medicine. Phys. Med. Biol. 63, 07TR01.   DOI
28 Park, Y. H., Shi, Y. P., Liang, B., Medriano, C. A. D., Jeon, Y. H., Torres, E., Uppal, K., Slutsker, L. and Jones, D. P. (2015) High-resolution metabolomics to discover potential parasite-specific biomarkers in a Plasmodium falciparum erythrocytic stage culture system. Malar. J. 14, 122.   DOI
29 Panchal, S. K., Poudyal, H., Iyer, A., Nazer, R., Alam, A., Diwan, V., Kauter, K., Sernia, C., Campbell, F. and Ward, L. (2011) High-carbohydrate, high-fat diet-induced metabolic syndrome and cardiovascular remodeling in rats. J. Cardiovasc. Pharmacol. 57, 611-624.   DOI
30 Park, Y. H., Fitzpatrick, A. M., Medriano, C. A. and Jones, D. P. (2016) High-resolution metabolomics to identify urine biomarkers in corticosteroid-resistant asthmatic children. J. Allergy Clin. Immunol. 139, 1518-1524.e4.   DOI
31 Pasquali, M. A., Gelain, D. P., Zanotto-Filho, A., de Souza, L. F., de Oliveira, R. B., Klamt, F. and Moreira, J. C. (2008) Retinol and retinoic acid modulate catalase activity in Sertoli cells by distinct and gene expression-independent mechanisms. Toxicol. In Vitro 22, 1177-1183.   DOI
32 Piao, L., Choi, J., Kwon, G. and Ha, H. (2017) Endogenous catalase delays high-fat diet-induced liver injury in mice. Korean J. Physiol. Pharmacol. 21, 317-325.   DOI
33 Rajasundaram, D. and Selbig, J. (2016) More effort - more results: recent advances in integrative 'omics' data analysis. Curr. Opin. Plant Biol. 30, 57-61.   DOI
34 Stewart, J. D. and Bolt, H. M. (2011) Metabolomics: biomarkers of disease and drug toxicity. Arch. Toxicol. 85, 3-4.   DOI
35 Ruhl, C. E. and Everhart, J. E. (2015) Fatty liver indices in the multiethnic United States National Health and Nutrition Examination Survey. Aliment. Pharmacol. Ther. 41, 65-76.   DOI
36 Singh, S., Allen, A. M., Wang, Z., Prokop, L. J., Murad, M. H. and Loomba, R. (2015) Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and metaanalysis of paired-biopsy studies. Clin. Gastroenterol. Hepatol. 13, 643-54.e1-9; quiz e39-e40.   DOI
37 Staels, B. and Fonseca, V. A. (2009) Bile acids and metabolic regulation: mechanisms and clinical responses to bile acid sequestration. Diabetes Care 32 Suppl 2, S237-S245.   DOI