Browse > Article
http://dx.doi.org/10.4062/biomolther.2018.078

ZFP36L1 and AUF1 Induction Contribute to the Suppression of Inflammatory Mediators Expression by Globular Adiponectin via Autophagy Induction in Macrophages  

Shrestha, Aastha (College of Pharmacy, Yeungnam University)
Pun, Nirmala Tilija (College of Pharmacy, Yeungnam University)
Park, Pil-Hoon (College of Pharmacy, Yeungnam University)
Publication Information
Biomolecules & Therapeutics / v.26, no.5, 2018 , pp. 446-457 More about this Journal
Abstract
Adiponectin, a hormone predominantly originated from adipose tissue, has exhibited potent anti-inflammatory properties. Accumulating evidence suggests that autophagy induction plays a crucial role in anti-inflammatory responses by adiponectin. However, underlying molecular mechanisms are still largely unknown. Association of Bcl-2 with Beclin-1, an autophagy activating protein, prevents autophagy induction. We have previously shown that adiponectin-induced autophagy activation is mediated through inhibition of interaction between Bcl-2 and Beclin-1. In the present study, we examined the molecular mechanisms by which adiponectin modulates association of Bcl-2 and Beclin-1 in macrophages. Herein, we demonstrated that globular adiponectin (gAcrp) induced increase in the expression of AUF1 and ZFP36L1, which act as mRNA destabilizing proteins, both in RAW 264.7 macrophages and primary peritoneal macrophages. In addition, gene silencing of AUF1 and ZFP36L1 caused restoration of decrease in Bcl-2 expression and Bcl-2 mRNA half-life by gAcrp, indicating crucial roles of AUF1 and ZFP36L1 induction in Bcl-2 mRNA destabilization by gAcrp. Moreover, knock-down of AUF1 and ZFP36L1 enhanced interaction of Bcl-2 with Beclin-1, and subsequently prevented gAcrp-induced autophagy activation, suggesting that AUF1 and ZFP36L1 induction mediates gAcrp-induced autophagy activation via Bcl-2 mRNA destabilization. Furthermore, suppressive effects of gAcrp on LPS-stimulated inflammatory mediators expression were prevented by gene silencing of AUF1 and ZFP36L1 in macrophages. Taken together, these results suggest that AUF1 and ZFP36L1 induction critically contributes to autophagy induction by gAcrp and are promising targets for anti-inflammatory responses by gAcrp.
Keywords
Adiponectin; AUF1; Autophagy; Bcl-2; Inflammation; TTP;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Knapinska, A. M., Gratacos, F. M., Krause, C. D., Hernandez, K., Jensen, A. G., Bradley, J. J., Wu, X., Pestka, S. and Brewer, G. (2011) Chaperone Hsp27 modulates AUF1 proteolysis and AU-rich element-mediated mRNA degradation. Mol. Cell. Biol. 31, 1419-1431.   DOI
2 Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominami, E. and Tanaka, K. (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880-884.   DOI
3 Lee, Y. J., Song, X., Lee, D. H., Dilly, A. K., Lee, Y. S., Choudry, H. A., Kwon, Y. T. and Bartlett, D. L. (2018) Crosstalk between apoptosis and autophagy is regulated by the arginylated BiP/Beclin-1/p62 complex. Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-17-0685 [Epub ahead of print].   DOI
4 Levine, B. and Klionsky, D. J. (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6, 463-477.   DOI
5 Levine, B., Mizushima, N. and Virgin, H. W. (2011) Autophagy in immunity and inflammation. Nature 469, 323-335.   DOI
6 Levine, B., Sinha, S. and Kroemer, G. (2008) Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 4, 600-606.   DOI
7 Li, L., Tan, H., Yang, H., Li, F., He, X., Gu, Z., Zhao, M. and Su, L. (2017) Reactive oxygen species mediate heat stress-induced apoptosis via ERK dephosphorylation and Bcl-2 ubiquitination in human umbilical vein endothelial cells. Oncotarget 8, 12902-12916.
8 Liu, M. and Liu, F. (2009) Transcriptional and post-translational regulation of adiponectin. Biochem. J. 425, 41-52.
9 McKnight, N. C. and Zhenyu, Y. (2013) Beclin 1, an essential component and master regulator of PI3K-III in health and disease. Curr. Pathobiol. Rep. 1, 231-238.   DOI
10 Mistry, T., Digby, J. E., Desai, K. M. and Randeva, H. S. (2008) Leptin and adiponectin interact in the regulation of prostate cancer cell growth via modulation of p53 and bcl-2 expression. BJU Int. 101, 1317-1322.   DOI
11 Nakayama, H., Nishida, K. and Otsu, K. (2016) Macromolecular degradation systems and cardiovascular aging. Circ. Res. 118, 1577-1592.   DOI
12 Oh, H. J., Magar, T. B. T., Pun, N. T., Lee, Y., Kim, E. H., Lee, E. S. and Park, P. H. (2018) YJI-7 suppresses ROS production and expression of inflammatory mediators via modulation of p38MAPK and JNK signaling in RAW 264.7 macrophages. Biomol. Ther. (Seoul) 26, 191-200.   DOI
13 Otake, Y., Sengupta, T. K., Bandyopadhyay, S., Spicer, E. K. and Fernandes, D. J. (2004) Drug-induced destabilization of bcl-2 mRNA: a new approach for inducing apoptosis in tumor cells. Curr. Opin. Investig. Drugs 5, 616-622.
14 Ouchi, N., Parker, J. L., Lugus, J. J. and Walsh, K. (2011) Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85-97.   DOI
15 Park, P. H., McMullen, M. R., Huang, H., Thakur, V. and Nagy, L. E. (2007) Short-term treatment of RAW264.7 macrophages with adiponectin increases tumor necrosis factor-alpha (TNF-alpha) expression via ERK1/2 activation and Egr-1 expression: role of TNF-alpha in adiponectin-stimulated interleukin-10 production. J. Biol. Chem. 282, 21695-21703.   DOI
16 Perri, A., Vizza, D., Lupinacci, S., Toteda, G., De Amicis, F., Leone, F., Gigliotti, P., Lofaro, D., La Russa, A. and Bonofiglio, R. (2016) Adiponectin secreted by tubular renal cells during LPS exposure worsens the cellular inflammatory damage. J. Nephrol. 29, 185-194.   DOI
17 Shibata, R., Sato, K., Pimentel, D. R., Takemura, Y., Kihara, S., Ohashi, K., Funahashi, T., Ouchi, N. and Walsh, K. (2005) Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat. Med. 11, 1096-1103.   DOI
18 Pun, N. T., Subedi, A., Kim, M. J. and Park, P. H. (2015) Globular adiponectin causes tolerance to LPS-induced TNF-alpha Expression via Autophagy Induction in RAW 264.7 macrophages: involvement of SIRT1/FoxO3A axis. PLoS ONE 10, e0124636.   DOI
19 Qi, G. M., Jia, L. X., Li, Y. L., Li, H. H. and Du, J. (2014) Adiponectin suppresses angiotensin II-induced inflammation and cardiac fibrosis through activation of macrophage autophagy. Endocrinology 155, 2254-2265.   DOI
20 Raineri, I., Wegmueller, D., Gross, B., Certa, U. and Moroni, C. (2004) Roles of AUF1 isoforms, HuR and BRF1 in ARE-dependent mRNA turnover studied by RNA interference. Nucleic Acids Res. 32, 1279-1288.   DOI
21 Tilija Pun, N. and Park, P. H. (2017) Role of p62 in the suppression of inflammatory cytokine production by adiponectin in macrophages: involvement of autophagy and p21/Nrf2 axis. Sci. Rep. 7, 393.   DOI
22 Tilija Pun, N. and Park, P. H. (2018) Adiponectin inhibits inflammatory cytokines production by Beclin-1 phosphorylation and B-cell lymphoma 2 mRNA destabilization: role for autophagy induction. Br. J. Pharmacol. 175, 1066-1084.   DOI
23 Tomas, E., Tsao, T. S., Saha, A. K., Murrey, H. E., Zhang Cc, C., Itani, S. I., Lodish, H. F. and Ruderman, N. B. (2002) Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl. Acad. Sci. U.S.A. 99, 16309-16313.   DOI
24 Zekavati, A., Nasir, A., Alcaraz, A., Aldrovandi, M., Marsh, P., Norton, J. D. and Murphy, J. J. (2014) Post-transcriptional regulation of BCL2 mRNA by the RNA-binding protein ZFP36L1 in malignant B cells. PLoS ONE 9, e102625.   DOI
25 Wagner, B. J., DeMaria, C. T., Sun, Y., Wilson, G. M. and Brewer, G. (1998) Structure and genomic organization of the human AUF1 gene: alternative pre-mRNA splicing generates four protein isoforms. Genomics 48, 195-202.   DOI
26 Wang, Y., Wang, X., Lau, W. B., Yuan, Y., Booth, D., Li, J. J., Scalia, R., Preston, K., Gao, E., Koch, W. and Ma, X. L. (2014) Adiponectin inhibits tumor necrosis factor-alpha-induced vascular inflammatory response via caveolin-mediated ceramidase recruitment and activation. Circ. Res. 114, 792-805.   DOI
27 Wang, Z. V. and Scherer, P. E. (2016) Adiponectin, the past two decades. J. Mol. Cell Biol. 8, 93-100.   DOI
28 Zhao, W., Li, Y., Jia, L., Pan, L., Li, H. and Du, J. (2014) Atg5 deficiency-mediated mitophagy aggravates cardiac inflammation and injury in response to angiotensin II. Free Radic. Biol. Med. 69, 108-115.   DOI
29 Zhou, C., Vignere, C. Z. and Levitan, E. S. (2008) AUF1 is upregulated by angiotensin II to destabilize cardiac Kv4.3 channel mRNA. J. Mol. Cell. Cardiol. 45, 832-838.   DOI
30 Blackshear, P. J. (2002) Tristetraprolin and other CCCH tandem zincfinger proteins in the regulation of mRNA turnover. Biochem. Soc. Trans. 30, 945-952.   DOI
31 Dalamaga, M., Diakopoulos, K. N. and Mantzoros, C. S. (2012) The role of adiponectin in cancer: a review of current evidence. Endocr. Rev. 33, 547-594.   DOI
32 Denzel, M. S., Scimia, M. C., Zumstein, P. M., Walsh, K., Ruiz-Lozano, P. and Ranscht, B. (2010) T-cadherin is critical for adiponectinmediated cardioprotection in mice. J. Clin. Invest. 120, 4342-4352.   DOI
33 Deretic, V., Saitoh, T. and Akira, S. (2013) Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13, 722-737.   DOI
34 Dodson, R. E. and Shapiro, D. J. (2002) Regulation of pathways of mRNA destabilization and stabilization. Prog. Nucleic Acid Res. Mol. Biol. 72, 129-164.
35 Funakoshi, Y., Doi, Y., Hosoda, N., Uchida, N., Osawa, M., Shimada, I., Tsujimoto, M., Suzuki, T., Katada, T. and Hoshino, S. (2007) Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases. Genes Dev. 21, 3135-3148.   DOI
36 Garneau, N. L., Wilusz, J. and Wilusz, C. J. (2007) The highways and byways of mRNA decay. Nat. Rev. Mol. Cell Biol. 8, 113-126.   DOI
37 Glaser, N. D., Lukyanenko, Y. O., Wang, Y., Wilson, G. M. and Rogers, T. B. (2006) JNK activation decreases PP2A regulatory subunit B56alpha expression and mRNA stability and increases AUF1 expression in cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 291, H1183-H1192.   DOI
38 He, C. and Klionsky, D. J. (2009) Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67-93.   DOI
39 Ishimaru, D., Ramalingam, S., Sengupta, T. K., Bandyopadhyay, S., Dellis, S., Tholanikunnel, B. G., Fernandes, D. J. and Spicer, E. K. (2009) Regulation of Bcl-2 expression by HuR in HL60 leukemia cells and A431 carcinoma cells. Mol. Cancer Res. 7, 1354-1366.   DOI
40 Huang, J. and Brumell, J. H. (2014) Bacteria-autophagy interplay: a battle for survival. Nat. Rev. Microbiol. 12, 101-114.   DOI
41 Ishimaru, D., Zuraw, L., Ramalingam, S., Sengupta, T. K., Bandyopadhyay, S., Reuben, A., Fernandes, D. J. and Spicer, E. K. (2010) Mechanism of regulation of bcl-2 mRNA by nucleolin and A+U-rich element-binding factor 1 (AUF1). J. Biol. Chem. 285, 27182-27191.   DOI
42 Khakurel, A. and Park, P. H. (2018) Globular adiponectin protects hepatocytes from tunicamycin-induced cell death via modulation of the inflammasome and heme oxygenase-1 induction. Pharmacol. Res. 128, 231-243.   DOI
43 Funderburk, S. F., Wang, Q. J. and Yue, Z. (2010) The Beclin 1-VPS34 complex--at the crossroads of autophagy and beyond. Trends Cell Biol. 20, 355-362.   DOI
44 Kim, M. J., Kadayat, T., Um, Y. J., Jeong, T. C., Lee, E. S. and Park, P. H. (2015) Inhibitory effect of 3-(4-Hydroxyphenyl)-1-(thiophen-2-yl) prop-2-en-1-one, a chalcone derivative on MCP-1 expression in macrophages via inhibition of ROS and Akt signaling. Biomol. Ther. (Seoul) 23, 119-127.   DOI
45 Kim, M. J., Kim, E. H., Pun, N. T., Chang, J. H., Kim, J. A., Jeong, J. H., Choi, D. Y., Kim, S. H. and Park, P. H. (2017) Globular adiponectin inhibits lipopolysaccharide-primed inflammasomes activation in macrophages via autophagy induction: the critical role of AMPK signaling. Int. J. Mol. Sci. 18, E1275.   DOI