Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.194

Convergence of Cancer Metabolism and Immunity: an Overview  

Van Dang, Chi (Ludwig Institute for Cancer Research)
Kim, Jung-whan (Department of Biological Sciences, The University of Texas at Dallas)
Publication Information
Biomolecules & Therapeutics / v.26, no.1, 2018 , pp. 4-9 More about this Journal
Abstract
Cancer metabolism as a field of research was founded almost 100 years ago by Otto Warburg, who described the propensity for cancers to convert glucose to lactate despite the presence of oxygen, which in yeast diminishes glycolytic metabolism known as the Pasteur effect. In the past 20 years, the resurgence of interest in cancer metabolism provided significant insights into processes involved in maintenance metabolism of non-proliferating cells and proliferative metabolism, which is regulated by proto-oncogenes and tumor suppressors in normal proliferating cells. In cancer cells, depending on the driving oncogenic event, metabolism is re-wired for nutrient import, redox homeostasis, protein quality control, and biosynthesis to support cell growth and division. In general, resting cells rely on oxidative metabolism, while proliferating cells rewire metabolism toward glycolysis, which favors many biosynthetic pathways for proliferation. Oncogenes such as MYC, BRAF, KRAS, and PI3K have been documented to rewire metabolism in favor of proliferation. These cell intrinsic mechanisms, however, are insufficient to drive tumorigenesis because immune surveillance continuously seeks to destroy neo-antigenic tumor cells. In this regard, evasion of cancer cells from immunity involves checkpoints that blunt cytotoxic T cells, which are also attenuated by the metabolic tumor microenvironment, which is rich in immuno-modulating metabolites such as lactate, 2-hydroxyglutarate, kynurenine, and the proton (low pH). As such, a full understanding of tumor metabolism requires an appreciation of the convergence of cancer cell intrinsic metabolism and that of the tumor microenvironment including stromal and immune cells.
Keywords
Cancer; Metabolism; Tumor suppressor; Oncogenes; Immunometabolism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alistar, A., Morris, B. B., Desnoyer, R., Klepin, H. D., Hosseinzadeh, K., Clark, C. et al. (2017) Safety and tolerability of the first-in-class agent CPI-613 in combination with modified FOLFIRINOX in patients with metastatic pancreatic cancer: a single-centre, openlabel, dose-escalation, phase 1 trial. Lancet Oncol. 18, 770-778.   DOI
2 Altman, B. J., Stine, Z. E. and Dang, C. V. (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16, 619-634.
3 Ardawi, M. S. and Newsholme, E. A. (1983) Glutamine metabolism in lymphocytes of the rat. Biochem. J. 212, 835-842.   DOI
4 Chan, M. C., Holt-Martyn, J. P., Schofield, C. J. and Ratcliffe, P. J. (2016) Pharmacological targeting of the HIF hydroxylases--a new field in medicine development. Mol. Aspects Med. 47-48, 54-75.   DOI
5 Cori, C. A. and Cori, G. T. (1925) The carbohydrate metabolism of tumours. J. Biol. Chem. 65, 397-405.
6 Davidson, S. M., Papagiannakopoulos, T., Olenchock, B. A., Heyman, J. E., Keibler, M. A., Luengo, A. et al. (2016) Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab. 23, 517-528.   DOI
7 DeBerardinis, R. J. and Chandel, N. S. (2016) Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200.   DOI
8 Gross, M. I., Demo, S. D., Dennison, J. B., Chen, L., Chernov-Rogan, T., Goyal, B. et al. (2014) Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13, 890-901.
9 Hensley, C. T., Faubert, B., Yuan, Q., Lev-Cohain, N., Jin, E., Kim, J. et al. (2016) Metabolic heterogeneity in human lung tumors. Cell 164, 681-694.   DOI
10 Hosios, A. M., Hecht, V. C., Danai, L. V., Johnson, M. O., Rathmell, J. C., Steinhauser, M. L., Manalis, S. R. and Vander Heiden, M. G. (2016) Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev. Cell 36, 540-549.   DOI
11 Missiaen, R., Morales-Rodriguez, F., Eelen, G. and Carmeliet, P. (2017) Targeting endothelial metabolism for anti-angiogenesis therapy: A pharmacological perspective. Vascul. Pharmacol. 90, 8-18.   DOI
12 Huang, D., Li, T., Wang, L., Zhang, L., Yan, R., Li, K., Xing, S., Wu, G., Hu, L., Jia, W., Lin, S. C., Dang, C. V., Song, L., Gao, P. and Zhang, H. (2016) Hepatocellular carcinoma redirects to ketolysis for progression under nutrition deprivation stress. Cell Res. 26, 1112-1130.   DOI
13 Koppenol, W. H., Bounds, P. L. and Dang, C. V. (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325-337.
14 Li, F., Wang, Y., Zeller, K. I., Potter, J. J., Wonsey, D. R., O'Donnell, K. A., Kim, J. W., Yustein, J. T., Lee, L. A. and Dang, C. V. (2005) Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol. Cell. Biol. 25, 6225-6234.   DOI
15 Murray, P. J., Rathmell, J. and Pearce, E. (2015) SnapShot: immunometabolism. Cell Metab. 22, 190-190.e1.   DOI
16 Nakazawa, M. S., Keith, B. and Simon, M. C. (2016) Oxygen availability and metabolic adaptations. Nat. Rev. Cancer 16, 663-673.   DOI
17 O'Neill, L. A., Kishton, R. J. and Rathmell, J. (2016) A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553-565.   DOI
18 Pasteur, L. (1879) The Physiological Theory of Fermentation. Kessinger Publishing, LLC.
19 Pavlova, N. N. and Thompson, C. B. (2016) The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27-47.   DOI
20 Sellers, K., Fox, M. P., Bousamra, M., 2nd, Slone, S. P., Higashi, R. M., Miller, D. M., Wang, Y., Yan, J., Yuneva, M. O., Deshpande, R., Lane, A. N. and Fan, T. W. (2015) Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Invest. 125, 687-698.   DOI
21 Wang, R., Dillon, C. P., Shi, L. Z., Milasta, S., Carter, R., Finkelstein, D., McCormick, L. L., Fitzgerald, P., Chi, H., Munger, J. and Green, D. R. (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871-882.   DOI
22 Semenza, G. L. (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148, 399-408.   DOI
23 Shen, C. and Kaelin, W. G., Jr. (2013) The VHL/HIF axis in clear cell renal carcinoma. Semin. Cancer Biol. 23, 18-25.   DOI
24 Sousa, C. M., Biancur, D. E., Wang, X., Halbrook, C. J., Sherman, M. H., Zhang, L., Kremer, D., Hwang, R. F., Witkiewicz, A. K., Ying, H., Asara, J. M., Evans, R. M., Cantley, L. C., Lyssiotis, C. A. and Kimmelman, A. C. (2016) Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479-483.   DOI
25 Warburg, O. (1956) On the origin of cancer cells. Science 123, 309-314.   DOI
26 Warburg, O., Wind, F. and Negelein, E. (1927) The metabolism of tumors in the body. J. Gen. Physiol. 8, 519-530.   DOI
27 Wolf, E., Gebhardt, A., Kawauchi, D., Walz, S., von Eyss, B., Wagner, N., Renninger, C., Krohne, G., Asan, E., Roussel, M. F. Eilers, M. (2013) Miz1 is required to maintain autophagic flux. Nat. Commun. 4, 2535.   DOI
28 Wong, B. W., Marsch, E., Treps, L., Baes, M. and Carmeliet, P. (2017) Endothelial cell metabolism in health and disease: impact of hypoxia. EMBO J. 36, 2187-2203.   DOI
29 Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A., Behjati, S., Biankin, A. V. et al. (2013) Signatures of mutational processes in human cancer. Nature 500, 415-421.   DOI
30 Yuneva, M. O., Fan, T. W., Allen, T. D., Higashi, R. M., Ferraris, D. V., Tsukamoto, T., Mates, J. M., Alonso, F. J., Wang, C., Seo, Y., Chen, X. and Bishop, J. M. (2012) The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15, 157-170.   DOI
31 Zhang, T., Somasundaram, R., Berencsi, K., Caputo, L., Rani, P., Guerry, D., Furth, E., Rollins, B. J., Putt, M., Gimotty, P., Swoboda, R., Herlyn, M. and Herlyn, D. (2005) CXC chemokine ligand 12 (stromal cell-derived factor 1 alpha) and CXCR4-dependent migration of CTLs toward melanoma cells in organotypic culture. J. Immunol. 174, 5856-5863.   DOI
32 Zhang, D., Wang, Y., Shi, Z., Liu, J., Sun, P., Hou, X., Zhang, J., Zhao, S., Zhou, B. P. and Mi, J. (2015) Metabolic reprogramming of cancer- associated fibroblasts by $IDH3{\alpha}$ downregulation. Cell Rep. 10, 1335-1348.