Browse > Article
http://dx.doi.org/10.4062/biomolther.2016.249

Application of Metabolomics to Quality Control of Natural Product Derived Medicines  

Lee, Kyung-Min (College of Pharmacy, Chung-Ang University)
Jeon, Jun-Yeong (College of Pharmacy, Chung-Ang University)
Lee, Byeong-Ju (College of Pharmacy, Chung-Ang University)
Lee, Hwanhui (College of Pharmacy, Chung-Ang University)
Choi, Hyung-Kyoon (College of Pharmacy, Chung-Ang University)
Publication Information
Biomolecules & Therapeutics / v.25, no.6, 2017 , pp. 559-568 More about this Journal
Abstract
Metabolomics has been used as a powerful tool for the analysis and quality assessment of the natural product (NP)-derived medicines. It is increasingly being used in the quality control and standardization of NP-derived medicines because they are composed of hundreds of natural compounds. The most common techniques that are used in metabolomics consist of NMR, GC-MS, and LC-MS in combination with multivariate statistical analyses including principal components analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). Currently, the quality control of the NP-derived medicines is usually conducted using HPLC and is specified by one or two indicators. To create a superior quality control framework and avoid adulterated drugs, it is necessary to be able to determine and establish standards based on multiple ingredients using metabolic profiling and fingerprinting. Therefore, the application of various analytical tools in the quality control of NP-derived medicines forms the major part of this review. $Veregen^{(R)}$ (Medigene AG, Planegg/Martinsried, Germany), which is the first botanical prescription drug approved by US Food and Drug Administration, is reviewed as an example that will hopefully provide future directions and perspectives on metabolomics technologies available for the quality control of NP-derived medicines.
Keywords
Metabolomics; Natural product-derived medicines; Quality control; $Veregen^{(R)}$;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Wichitnithad, W., Jongaroonngamsang, N., Pummangura, S. and Rojsitthisak, P. (2009) A simple isocratic HPLC method for the simultaneous determination of curcuminoids in commercial turmeric extracts. Phytochem. Anal. 20, 314-319.   DOI
2 Xie, G., Ye, M., Wang, Y., Ni, Y., Su, M., Huang, H., Qiu, M., Zhao, A., Zheng, X., Chen, T. and Jia, W. (2009) Characterization of pu-erh tea using chemical and metabolic profiling approaches. J. Agric Food Chem. 57, 3046-3054.   DOI
3 Xu, L., Li, J., Yan, C. and Shan, A. (2007) Study on HPLC method to determine contents of Schisandrin A andSchisandrin B in Schisandra chinensis extraction. J. Northeast Agric. Univ. 14, 323-326.
4 Yang, S. Y., Kim, H. K., Lefeber, A. W., Erkelens, C., Angelova, N., Choi, Y. H. and Verpoorte, R. (2006) Application of two-dimensional nuclear magnetic resonance spectroscopy to quality control of ginseng commercial products. Planta Med. 72, 364-369.   DOI
5 Yang, X., Yang, L., Xiong, A., Li, D. and Wang, Z. (2011) Authentication of Senecio scandens and S. vulgaris based on the comprehensive secondary metabolic patterns gained by UPLC-DAD/ESI-MS. J. Pharm. Biomed. Anal. 56, 165-172.   DOI
6 Yen, G. C. and Chen, H. Y. (1995) Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 43, 27-32.   DOI
7 Zhang, A., Sun, H., Wang, P., Han, Y. and Wang, X. (2012) Modern analytical techniques in metabolomics analysis. Analyst 137, 293-300.   DOI
8 Zhang, Q. and Ye, M. (2009) Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). J. Chromatogr. A 1216, 1954-1969.   DOI
9 Kwon, Y. K., Ahn, M. S., Park, J. S., Liu, J. R., In, D. S., Min, B. W. and Kim, S. W. (2014) Discrimination of cultivation ages and cultivars of ginseng leaves using Fourier transform infrared spectroscopy combined with multivariate analysis. J. Ginseng Res. 38, 52-58.   DOI
10 Zhao, Y., Chen, P., Lin, L., Harnly, J. M., Yu, L. L. and Li, Z. (2011) Tentative identification, quantitation, and principal component analysis of green pu-erh, green, and white teas using UPLC/DAD/MS. Food Chem. 126, 1269-1277.   DOI
11 Landis-Piwowar, K. R., Huo, C., Chen, D. I., Milacic, V., Shi, G., Chan, T. H. and Dou, Q. P. (2007) A novel prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate as a potential anticancer agent. Cancer Res. 67, 4303-4310.   DOI
12 Le Gall, G., Colquhoun, I. J. and Defernez, M. (2004) Metabolite profiling using (1)H NMR spectroscopy for quality assessment of green tea, Camellia sinensis (L.). J. Agric. Food Chem. 52, 692-700.   DOI
13 Lv, W. F., Ding, M. Y. and Zheng, R. (2005) Isolation and quantitation of amygdalin in Apricot-kernel and Prunus Tomentosa Thunb. by HPLC with solid-phase extraction. J. Chromatogr. Sci. 43, 383-387.   DOI
14 Lin, J. K. and Lin-Shiau, S. Y. (2006) Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol. Nutr. Food Res. 50, 211-217.   DOI
15 Lin, Y. L., Cheng, C. Y., Lin, Y. P., Lau, Y. W., Juan, I. M. and Lin, J. K. (1998) Hypolipidemic effect of green tea leaves through induction of antioxidant and phase II enzymes including superoxide dismutase, catalase, and glutathione S-transferase in rats. J. Agric. Food Chem. 46, 1893-1899.   DOI
16 Lu, J., Xiang, B., Liu, H., Xiang, S., Xie, S. and Deng, H. (2008) Application of two-dimensional near-infrared correlation spectroscopy to the discrimination of Chinese herbal medicine of different geographic regions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 69, 580-586.   DOI
17 Mengs, U., Pohl, T. and Mitchell, T. (2012) $Legalon^{(R)}$ SIL: the antidote of choice in patients with acute hepatotoxicity from amatoxin poisoning. Curr. Pharm. Biotechnol. 13, 1964-1970.   DOI
18 MIT Technology Review (2005) 10 Breakthrough Technology 2015. Available from: http://www2.technologyreview.com/news/404001/10-emerging-technologies.
19 Tarachiwin, L., Ute, K., Kobayashi, A. and Fukusaki, E. (2007) $^1H$NMR based metabolic profiling in the evaluation of Japanese green tea quality. J. Agric. Food Chem. 55, 9330-9336.   DOI
20 Suzuki, H. (1984) Standard compounds for quantitative determination of principles of crude drugs-1-Paeoniflorin, a major principle of peony root. Jap. J. Pharmacogn. 38, 144-148.
21 Cui, L. and Su, X. Z. (2009) Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev. Anti Infect. Ther. 7, 999-1013.   DOI
22 Choi, Y. H., Choi, H. K., Hazekamp, A., Bermejo, P., Schilder, Y., Erkelens, C. and Verpoorte, R. (2003) Quantitative analysis of bilobalide and ginkgolides from Ginkgo biloba leaves and Ginkgo products using $^1H$-NMR. Chem. Pharm. Bull. 51, 158-161.   DOI
23 Cooper, R., Morre, D. J. and Morré, D. M. (2005) Medicinal benefits of green tea: part II. Review of anticancer properties. J. Altern. Complement. Med. 11, 639-652.   DOI
24 Court, W. E. (2000) Ginseng: The Genus Panax (R. Hardman, Ed.), pp. 205-220. Taylor & Francis e-Library, The Netherlands.
25 Ding, Y., Wu, E., Chen, J., Nguyen, H. T., Do, T. H., Park, K. L., Ba, K. H., Kim, H. Y. and Kang, J. S. (2009) Quality evaluation of moutan cortex radicis using multiple component analysis by high performance liquid chromatography. Bull. Korean Chem. Soc. 30, 2240-2244.   DOI
26 Dunn, W. B. and Ellis, D. I. (2005) Metabolomics: current analytical platforms and methodologies. Trends Analyt. Chem. 24, 285-294.   DOI
27 Fraser, K., Harrison, S. J., Lane, G. A., Otter, D. E., Hemar, Y., Quek, S. Y. and Rasmussen, S. (2012) Non-targeted analysis of tea by hydrophilic interaction liquid chromatography and high resolution mass spectrometry. Food Chem. 134, 1616-1623.   DOI
28 Eriksson, L., Johansson, E., Kettaneh-Wold, N., Trygg, J., Wikstrom, C. and Wold, S. (2006) Multi and Megavariate Data Analysis: Part I: Basic Principles and Applications, pp. 39-101. Umetrics AB, Sweden.
29 Farag, M. A., Porzel, A. and Wessjohann, L. A. (2012) Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC-MS, LC-MS and 1D NMR techniques. Phytochemistry 76, 60-72.   DOI
30 Farag, M. A. and Wessjohann, L. A. (2012) Metabolome classification of commercial Hypericum perforatum (St. John's Wort) preparations via UPLC-qTOF-MS and chemometrics. Planta Med. 78, 488-496.   DOI
31 Fu, H. Y., Huang, D. C., Yang, T. M., She, Y. B. and Zhang, H. (2013) Rapid recognition of Chinese herbal pieces of Areca catechu by different concocted processes using Fourier transform mid-infrared and near-infrared spectroscopy combined with partial least-squares discriminant analysis. Chinese Chem. Lett. 24, 639-642.   DOI
32 Ghiulai, V. M., Socaciu, C., Jianu, I., Ranga, F. and Fetea, F. (2006) Identification and quantitative evaluation of amygdalin from apricot, plum and peach oils and kernels. Bulletin UASVM Agriculture 62, 246-253.
33 Gromski, P. S., Muhamadali, H., Ellis, D. I., Xu, Y., Correa, E., Turner, M. L. and Goodacre, R. (2015) A tutorial review: Metabolomics and partial least squares-discriminant analysis--a marriage of convenience or a shotgun wedding. Anal. Chim. Acta 879, 10-23.   DOI
34 Gurley, B. J., Wang, P. and Gardner, S. F. (1998) Ephedrine-type alkaloid content of nutritional supplements containing Ephedra sinica (Ma-huang) as determined by high performance liquid chromatography. J. Pharm. Sci. 87, 1547-1553.   DOI
35 Jensen, A. G., Ndjoko, K., Wolfender, J. L., Hostettmann, K., Camponovo, F. and Soldati, F. (2002) Liquid chromatography-atmospheric pressure chemical ionisation/mass spectrometry: a rapid and selective method for the quantitative determination of ginkgolides and bilobalide in ginkgo leaf extracts and phytopharmaceuticals. Phytochem. Anal. 13, 31-38.   DOI
36 Hasada, K., Yoshida, T., Yamazaki, T., Sugimoto, N., Nishimura, T., Nagatsu, A. and Mizukami, H. (2011) Application of $^1H$-NMR spectroscopy to validation of berberine alkaloid reagents and to chemical evaluation of Coptidis rhizoma. J. Nat. Med. 65, 262-267.   DOI
37 Jacquemond-Collet, I., Bessière, J. M., Hannedouche, S., Bertrand, C., Fouraste, I. and Moulis, C. (2001) Identification of the alkaloids of Galipea officinalis by gas chromatography-mass spectrometry. Phytochem. Anal. 12, 312-329.   DOI
38 Jantarat, C., Sirathanarun, P., Songsrm, W., Srinornate, W. and Daengprom, S. (2013) A simple and rapid HPLC technique for determination of arecoline in areca nut (Areca catechu L.) extract. Walailak J. Sci. & Tech. 10, 57-66.
39 Jumtee, K., Bamba, T. and Fukusaki, E. (2009) Fast GC-FID based metabolic fingerprinting of Japanese green tea leaf for its quality ranking prediction. J. Sep. Sci. 32, 2296-2304.   DOI
40 Kang, J., Choi, M. Y., Kang, S., Kwon, H. N., Wen, H., Lee, C. H., Park, S., Wiklund, S., Kim, H. J., Kwon, S. W. and Park, S. (2008a) Application of a $^1H$ nuclear magnetic resonance (NMR) metabolomics approach combined with orthogonal projections to latent structure-discriminant analysis as an efficient tool for discriminating between Korean and Chinese herbal medicines. J. Agric. Food Chem. 56, 11589-11595.   DOI
41 Kim, S. H., Shin, Y. S. and Choi, H. K. (2016) NanoESI-MS-based lipidomics to discriminate between cultivars, cultivation ages, and parts of Panax ginseng. Anal. Bioanal. Chem. 408, 2109-2121.   DOI
42 Babu, P. V., Sabitha, K. E. and Shyamaladevi, C. S. (2006) Therapeutic effect of green tea extract on oxidative stress in aorta and heart of streptozotocin diabetic rats. Chem. Biol. Interact. 162, 114-120.   DOI
43 Bochořakova, H., Paulova, H., Slanina, J., Musil, P. and Taborska, E. (2003) Main flavonoids in the root of Scutellaria baicalensis cultivated in Europe and their comparative antiradical properties. Phytother. Res. 17, 640-644.   DOI
44 Chen, S. T., Dou, J., Temple, R., Agarwal, R., Wu, K. M. and Walker, S. (2008) New therapies from old medicines. Nat. Biotechnol. 26, 1077-1083.   DOI
45 Kang, J., Lee, S., Kang, S., Kwon, H. N., Park, J. H., Kwon, S. W. and Park, S. (2008b) NMR-based metabolomics approach for the differentiation of ginseng (Panax ginseng) roots from different origins. Arch. Pharm. Res. 31, 330-336.   DOI
46 Kataoka, M., Tokuyama, E., Miyanaga, Y. and Uchida, T. (2008) The taste sensory evaluation of medicinal plants and Chinese medicines. Int. J. Pharm. 351, 36-44.   DOI
47 Kim, H. K., Choi, Y. H., Erkelens, C., Lefeber, A. W. and Verpoorte, R. (2005) Metabolic fingerprinting of Ephedra species using $^1H$-NMR spectroscopy and principal component analysis. Chem. Pharm. Bull. 53, 105-109.   DOI
48 Kim, H. K., Choi, Y. H. and Verpoorte, R. (2010) NMR-based metabolomic analysis of plants. Nat. Protoc. 5, 536-549.   DOI
49 Kim, T. H., Jang, S., Lee, A. R., Lee, A. Y., Choi, G. and Kim, H. K. (2014) Optimization of extraction conditions for swertiamarin in Swertia japonica makino. Korea J. Herbol. 29, 13-18.
50 Kunle, O. F., Egharevba, H. O. and Ahmadu, P. O. (2012) Standardization of herbal medicines - A review. Int. J. Biodivers. Conserv. 4, 101-112.
51 Okada, T., Nakamura, Y., Kanaya, S., Takano, A., Malla, K. J., Nakane, T., Kitayama, M. and Sekita, S. (2009) Metabolome analysis of Ephedra plants with different contents of ephedrine alkaloids by using UPLC-Q-TOF-MS. Planta Med., 75, 1356-1362.   DOI
52 Lee, J., Jung, Y., Shin, J. H., Kim, H. K., Moon, B. C., Ryu, D. H. and Hwang, G. S. (2014) Secondary metabolite profiling of Curcuma species grown at different locations using GC/TOF and UPLC/Q-TOF MS. Molecules 19, 9535-9551.   DOI
53 Li, Y., Hu, Z. and He, L. (2007) An approach to develop binary chromatographic fingerprints of the total alkaloids from Caulophyllum robustum by high performance liquid chromatography/diode array detector and gas chromatography/mass spectrometry. J. Pharm. Biomed. Anal. 43, 1667-1672.   DOI
54 Montoro, P., Maldini, M., Russo, M., Postorino, S., Piacente, S. and Pizza, C. (2011) Metabolic profiling of roots of liquorice (Glycyrrhiza glabra) from different geographical areas by ESI/MS/MS and determination of major metabolites by LC-ESI/MS and LC-ESI/MS/MS. J Pharm. Biomed. Anal. 54, 535-544.   DOI
55 Nugroho, A., Park, M. G., Jin, S. E., Choi, J. S. and Park, H. J. (2009) Quantitative analsysis of flavanone glycosides and peroxynitrite scavenging effect of the five oriental medicinal drugs (Aurantii nobilis Pericarpium, Citrii unshiu Pericarpium, Citrii unshiu Semen, Aurantii Fructus, Poncirii Fructus). Korean J. Pharmacogn. 40, 370-375.
56 Oh, M. J., Lee, K. S., Son, H. Y. and Kim, S. Y. (1990) Antioxidative components of Pueraria root. Korean J. Food Sci. Technol. 22, 793-798.
57 Perez-Enciso, M. and Tenenhaus, M. (2003) Prediction of clinical outcome with microarray data: a partial least squares discriminant analysis (PLS-DA) approach. Hum. Genet. 112, 581-592.
58 Pongsuwan, W., Bamba, T., Harada, K., Yonetani, T., Kobayashi, A. and Fukusaki, E. (2008a) High-throughput technique for comprehensive analysis of Japanese green tea quality assessment using ultra-performance liquid chromatography with time-of-flight mass spectrometry (UPLC/TOF MS). J. Agric. Food Chem. 56, 10705-10708.   DOI
59 Pongsuwan, W., Bamba, T., Yonetani, T., Kobayashi, A. and Fukusaki, E. (2008b) Quality prediction of Japanese green tea using pyrolyzer coupled GC/MS based metabolic fingerprinting. J. Agric. Food Chem. 56, 744-750.   DOI
60 Pongsuwan, W., Fukusaki, E., Bamba, T., Yonetani, T., Yamahara, T. and Kobayashi, A. (2007) Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting. J. Agric. Food Chem. 55, 231-236.   DOI
61 Sakamoto, Y., Nakagawa, K., Kawana, S., Lingga, N., Lai Chin, H. L. and Miyagawa, H. (2010) GC/MS Technical Report (No. 1). Available from: https://www.shimadzu.it/sites/default/files/Profiling_of_Japanese_Green_Tea_Metabolites_by_GC-MS.pdf/.
62 Samukawa, K., Yamashita, H., Matsuda, H. and Kubo, M. (1995) Simultaneous analysis of ginsenosides of various ginseng radix by HPLC. Yakugaku Zasshi 43, 137-141.
63 Scannell, J. W., Blanckley, A., Boldon, H. and Warrington, B. (2012) Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov. 11, 191-200.   DOI
64 Selvam, A. B. D. (2008) Inventory of vegetable crude drug samples housed in botanical survey of India, Howrah. Pharmacogn. Rev. 2, 61-94.
65 Shin, Y. G., Cho, K. H., Kim, J. M., Park, M. K. and Park, J. H. (1999) Determination of betaine in Lycium chinense fruits by liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. A 857, 331-335.   DOI
66 Song, S. Y., Lee, Y. K. and Kim, I. J. (2016) Sugar and acid content of Citrus prediction modeling using FT-IR fingerprinting in combination with multivariate statistical analysis. Food Chem. 190, 1027-1032.   DOI
67 U.S. Food and Drug Administration (2006b) Drugs@FDA. Available from: http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index. cfm?fuseaction=Search.DrugDetails/.
68 Tilton, R., Paiva, A. A., Guan, J. Q., Marathe, R., Jiang, Z., van Eyndhoven, W., Bjoraker, J., Prusoff, Z., Wang, H., Liu, S. H. and Cheng, Y. C. (2010) A comprehensive platform for quality control of botanical drugs (PhytomicsQC): a case study of Huangqin Tang (HQT) and PHY906. Chin. Med. 5, 30.   DOI
69 Tsai, T. R., Tseng, T. Y., Chen, C. F. and Tsai, T. H. (2002) Identification and determination of geniposide contained in Gardenia jasminoides and in two preparations of mixed traditional Chinese medicines. J. Chromatogr. A 961, 83-88.   DOI
70 U.S. Food and Drug Administration (2006a) Chemistry Review Data Sheet. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2006/021902s000_chemr.pdf/.
71 Van der Kooy, F., Verpoorte, R. and Meyer, J. M. (2008) Metabolomic quality control of claimed anti-malarial Artemisia afra herbal remedy and A. afra and A. annua plant extracts. S. Afr. J. Bot. 74, 186-189.   DOI
72 Weckwerth, W. and Morgenthal, K. (2005) Metabolomics: from pattern recognition to biological interpretation. Drug Discov. Today 10, 1551-1558.   DOI
73 Avula, B., Joshi, V. C., Weerasooriya, A. and Khan, I. A. (2005) Liquid chromatography for separation and quantitative determination of adrenergic amines and flavonoids from Poncirus trifoliatus Raf. fruits at different stages of growth. Chromatographia 62, 379-383.   DOI
74 Abdi, H. (2003) Partial least square regression (PLS regression). In Encyclopedia for Research Methods for the Social Sciences (N. Salkind, Ed.), pp. 792-795. Sage Publications, Inc., USA.