Cytisine, a Partial Agonist of α4β2 Nicotinic Acetylcholine Receptors, Reduced Unpredictable Chronic Mild Stress-Induced Depression-Like Behaviors |
Han, Jing
(Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University)
Wang, Dong-sheng (Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University) Liu, Shui-bing (Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University) Zhao, Ming-gao (Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University) |
1 | Philip, N. S., Carpenter, L. L., Tyrka, A. R. and Price, L. H. (2010) Nicotinic acetylcholine receptors and depression: a review of the preclinical and clinical literature. Psychopharmacology (Berl.) 212, 1-12. DOI |
2 | Philip, N. S., Carpenter, L. L., Tyrka, A. R. and Price, L. H. (2012) The nicotinic acetylcholine receptor as a target for antidepressant drug development. ScientificWorldJournal 2012, 104105. |
3 | Picciotto, M. R., Zoli, M., Léna, C., Bessis, A., Lallemand, Y., Le Novere, N., Vincent, P., Pich, E. M., Brûlet, P. and Changeux, J. P. (1995) Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374, 65-67. DOI |
4 | Picciotto, M. R., Zoli, M., Rimondini, R., Léna, C., Marubio, L. M., Pich, E. M., Fuxe, K. and Changeux, J. P. (1998) Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 391, 173-177. DOI |
5 | Radchenko, E. V., Dravolina, O. A. and Bespalov, A. Y. (2015) Agonist and antagonist effects of cytisine in vivo. Neuropharmacology 95, 206-214. DOI |
6 | Rahman, S. (2015) Targeting brain nicotinic acetylcholine receptors to treat major depression and co-morbid alcohol or nicotine addiction. CNS Neurol. Disord. Drug Targets 14, 647-653. DOI |
7 | Sajja, R. K. and Rahman, S. (2013) Cytisine modulates chronic voluntary ethanol consumption and ethanol-induced striatal up-regulation of DeltaFosB in mice. Alcohol 47, 299-307. DOI |
8 | Salin-Pascual, R. J., de la Fuente, J. R., Galicia-Polo, L. and Drucker- Colin, R. (1995) Effects of transderman nicotine on mood and sleep in nonsmoking major depressed patients. Psychopharmacology (Berl.) 121, 476-479. DOI |
9 | Salin-Pascual, R. J., Rosas, M., Jimenez-Genchi, A., Rivera-Meza, B. L. and Delgado-Parra, V. (1996) Antidepressant effect of transdermal nicotine patches in nonsmoking patients with major depression. J. Clin. Psychiatry 57, 387-389. |
10 | Schmidt, B. L., Tambeli, C. H., Gear, R. W. and Levine, J. D. (2001) Nicotine withdrawal hyperalgesia and opioid-mediated analgesia depend on nicotine receptors in nucleus accumbens. Neuroscience 106, 129-136. DOI |
11 | Semba, J., Mataki, C., Yamada, S., Nankai, M. and Toru, M. (1998) Antidepressantlike effects of chronic nicotine on learned helplessness paradigm in rats. Biol. Psychiatry 43, 389-391. DOI |
12 | Seth, P., Cheeta, S., Tucci, S. and File, S. E. (2002) Nicotinic--serotonergic interactions in brain and behaviour. Pharmacol. Biochem. Behav. 71, 795-805. DOI |
13 | Tutka, P. and Zatoński, W. (2006) Cytisine for the treatment of nicotine addiction: from a molecule to therapeutic efficacy. Pharmacol. Rep. 58, 777-798. |
14 | Wang, W., Lu, Y., Xue, Z., Li, C., Wang, C., Zhao, X., Zhang, J., Wei, X., Chen, X., Cui, W., Wang, Q. and Zhou, W. (2015) Rapid-acting antidepressant-like effects of acetyl-l-carnitine mediated by PI3K/AKT/BDNF/VGF signaling pathway in mice. Neuroscience 285, 281-291. DOI |
15 | Willner, P., Towell, A., Sampson, D., Sophokleous, S. and Muscat, R. (1987) Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl.) 93, 358-364. |
16 | Wooltorton, J. R., Pidoplichko, V. I., Broide, R. S. and Dani, J. A. (2003) Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas. J. Neurosci. 23, 3176-3185. DOI |
17 | Arias, H. R., Rosenberg, A., Targowska-Duda, K. M., Feuerbach, D., Jozwiak, K., Moaddel, R. and Wainer, I. W. (2010) Tricyclic antidepressants and mecamylamine bind to different sites in the human alpha4beta2 nicotinic receptor ion channel. Int. J. Biochem. Cell Biol. 42, 1007-1018. DOI |
18 | Yan, W. J., Tan, Y. C., Xu, J. C., Tang, X. P., Zhang, C., Zhang, P. B. and Ren, Z. Q. (2015) Protective effects of silibinin and its possible mechanism of action in mice exposed to chronic unpredictable mild stress. Biomol. Ther. (Seoul) 23, 245-250. DOI |
19 | Zhong, P., Wang, W., Pan, B., Liu, X., Zhang, Z., Long, J. Z., Zhang, H. T., Cravatt, B. F. and Liu, Q. S. (2014) Monoacylglycerol lipase inhibition blocks chronic stress-induced depressive-like behaviors via activation of mTOR signaling. Neuropsychopharmacology 39, 1763-1776. DOI |
20 | Abelaira, H. M., Reus, G. Z., Neotti, M. V. and Quevedo, J. (2014) The role of mTOR in depression and antidepressant responses. Life Sci. 101, 10-14. DOI |
21 | Bell, R. L., Eiler, B. J., 2nd, Cook, J. B. and Rahman, S. (2009) Nicotinic receptor ligands reduce ethanol intake by high alcohol-drinking HAD-2 rats. Alcohol 43, 581-592. DOI |
22 | Bergami, M. and Berninger, B. (2012) A fight for survival: the challenges faced by a newborn neuron integrating in the adult hippocampus. Dev. Neurobiol. 72, 1016-1031. DOI |
23 | Cahill, K., Stevens, S., Perera, R. and Lancaster, T. (2013) Pharmacological interventions for smoking cessation: an overview and network meta-analysis. Cochrane Database Syst. Rev. 5, CD009329. |
24 | Cheeta, S., Irvine, E. E., Kenny, P. J. and File, S. E. (2001) The dorsal raphe nucleus is a crucial structure mediating nicotine's anxiolytic effects and the development of tolerance and withdrawal responses. Psychopharmacology (Berl.) 155, 78-85. DOI |
25 | Fryer, J. D. and Lukas, R. J. (1999) Antidepressants noncompetitively inhibit nicotinic acetylcholine receptor function. J. Neurochem. 72, 1117-1124. |
26 | Damaj, M. I., Kao, W. and Martin, B. R. (2003) Characterization of spontaneous and precipitated nicotine withdrawal in the mouse. J. Pharmacol. Exp. Ther. 307, 526-534. DOI |
27 | Duman, R. S. and Voleti, B. (2012) Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci. 35, 47-56. DOI |
28 | El Yacoubi, M., Bouali, S., Popa, D., Naudon, L., Leroux-Nicollet, I., Hamon, M., Costentin, J., Adrien, J. and Vaugeois, J. M. (2003) Behavioral, neurochemical, and electrophysiological characterization of a genetic mouse model of depression. Proc. Natl. Acad. Sci. U.S.A. 100, 6227-6232. DOI |
29 | Glassman, A. H., Helzer, J. E., Covey, L. S., Cottler, L. B., Stetner, F., Tipp, J. E. and Johnson, J. (1990) Smoking, smoking cessation, and major depression. JAMA 264, 1546-1549. DOI |
30 | Gotti, C., Riganti, L., Vailati, S. and Clementi, F. (2006) Brain neuronal nicotinic receptors as new targets for drug discovery. Curr. Pharm. Des. 12, 407-428. DOI |
31 | Hennings, E. C., Kiss, J. P. and Vizi, E. S. (1997) Nicotinic acetylcholine receptor antagonist effect of fluoxetine in rat hippocampal slices. Brain Res. 759, 292-294. DOI |
32 | Hogg, R. C., Raggenbass, M. and Bertrand, D. (2003) Nicotinic acetylcholine receptors: from structure to brain function. Rev. Physiol. Biochem. Pharmacol. 147, 1-46. |
33 | Janowsky, D. S., el-Yousef, M. K., Davis, J. M. and Sekerke, H. J. (1972) A cholinergic-adrenergic hypothesis of mania and depression. Lancet 2, 632-635. |
34 | Ma, Z., Strecker, R. E., McKenna, J. T., Thakkar, M. M., McCarley, R. W. and Tao, R. (2005) Effects on serotonin of (-)nicotine and dimethylphenylpiperazinium in the dorsal raphe and nucleus accumbens of freely behaving rats. Neuroscience 135, 949-958. DOI |
35 | Koo, J. W. and Duman, R. S. (2008) IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc. Natl. Acad. Sci. U.S.A. 105, 751-756. DOI |
36 | Lopez-Valdes, H. E. and Garcia-Colunga, J. (2001) Antagonism of nicotinic acetylcholine receptors by inhibitors of monoamine uptake. Mol. Psychiatry 6, 511-519. DOI |
37 | Lukas, R. J., Changeux, J. P., Le Novère, N., Albuquerque, E. X., Balfour, D. J., Berg, D. K., Bertrand, D., Chiappinelli, V. A., Clarke, P. B., Collins, A. C., Dani, J. A., Grady, S. R., Kellar, K. J., Lindstrom, J. M., Marks, M. J., Quik, M., Taylor, P. W. and Wonnacott, S. (1999) International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol. Rev. 51, 397-401. |
38 | Millar, N. S. (2003) Assembly and subunit diversity of nicotinic acetylcholine receptors. Biochem. Soc. Trans. 31, 869-874. DOI |
39 | Mineur, Y. S., Einstein, E. B., Bentham, M. P., Wigestrand, M. B., Blakeman, S., Newbold, S. A. and Picciotto, M. R. (2015) Expression of the 5-HT1A serotonin receptor in the hippocampus is required for social stress resilience and the antidepressant-like effects induced by the nicotinic partial agonist cytisine. Neuropsychopharmacology 40, 938-946. DOI |
40 | Nasca, C., Xenos, D., Barone, Y., Caruso, A., Scaccianoce, S., Matrisciano, F., Battaglia, G., Mathe, A. A., Pittaluga, A., Lionetto, L., Simmaco, M. and Nicoletti, F. (2013) L-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors. Proc. Natl. Acad. Sci. U.S.A. 110, 4804-4809. DOI |