Browse > Article
http://dx.doi.org/10.4062/biomolther.2014.140

Phenolic Compounds from the Leaves of Stewartia pseudocamellia Maxim. and their Whitening Activities  

Roh, Hyun Jung (Natural Product Laboratory, School of Pharmacy, Sungkyunkawn University)
Noh, Hye-Ji (Lifetree Biotech Co. Ltd.)
Na, Chun Su (Lifetree Biotech Co. Ltd.)
Kim, Chung Sub (Natural Product Laboratory, School of Pharmacy, Sungkyunkawn University)
Kim, Ki Hyun (Natural Product Laboratory, School of Pharmacy, Sungkyunkawn University)
Hong, Cheol Yi (Lifetree Biotech Co. Ltd.)
Lee, Kang Ro (Natural Product Laboratory, School of Pharmacy, Sungkyunkawn University)
Publication Information
Biomolecules & Therapeutics / v.23, no.3, 2015 , pp. 283-289 More about this Journal
Abstract
The half-dried leaves of Stewartia. pseudocamellia were extracted with hot water (SPE) and partitioned with n-hexane (SPEH), dichloromethane (SPED), and ethyl acetate (SPEE) successively. SPE and SPEE showed significant inhibitory effects against melanogenesis and tyrosinase activities. By bioassay-guided isolation, ten phenolic compounds were isolated by column chromatography from SPEE. The whitening effect of the isolated compounds from SPEE were tested for the inhibitory activities against melanogenesis using B16 melanoma cells, in vitro inhibition of tyrosinase, and L-3,4-dihydorxy-indole-2-carboxylic acid (L-DOPA) auto-oxidation assay. A cytotoxic activity assay was done to examine the cellular toxicity in Raw 264.7 macrophage cells. Of the compounds isolated, gallic acid and quercetin revealed significant inhibitory activities against melanogenesis compared to arbutin. In particular, quercetin exhibited similar inhibitory activities against tyrosinase and L-DOPA oxidation without cytotoxicity. These results suggested that SPE could be used as a potential source of natural skin-whitening material in cosmetics as well as in food products.
Keywords
Stewartia pseudocamellia Maxim.; Quercetin; Melanogenesis; Tyrosinase; Skin whitening;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Sugumaran, M. (2002) Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigment Cell Res. 15, 2-9.   DOI
2 Susanne, S., Nadine, H., and Thomas, H. (2004) Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. J. Agric. Food Chem. 52, 3498-3508.   DOI
3 Arung, E. T., Furuta, S., Ishikawa, H., Kusuma, I. W., Shimizu, K. and Kondo, R. (2011) Anti-melanogenesis properties of quercetin- and its derivative-rich extract from Allium cepa. Food Chem. 124, 1024-1028.   DOI
4 Guvenalp, Z. and Demirezer, L. O. (2005) Flavonol glycosides from Asperulaarvensis L. Turk. J. Chem. 29, 163-169.
5 Boissy, R. E. and Manga, P. (2004) On the etiology of contact/occupationalvitiligo. Pigment Cell Res. 17, 208-214.   DOI
6 Didem, S., Mahmut, K. S., Suna, A. S., Hilal, O. and Olov, S. (2009) Antioxidant galloylatedflavonoid from Geranium tuberosum L. subsp. tuberosum. Tuck. J. Chem. 33, 685-692.
7 Fujii, T. and Saito M. (2009) Inhibitory effect of quercetin isolated from rose rip (Rosa canina L.) against melanogenesis by mouse melanoma cells. Biosci. Biotechnol. Biochem. 73, 1989-1993.   DOI
8 Hearing, V. J. and Jimenez, M. (1987) Mammalian tyrosinase-the critical regulatory control point in melanocyte pigmentation. Int. J. Biochem. 19, 1141-1147.   DOI
9 Hosoi, J., Abe, E., Suda, T. and Kuroki, T. (1985) Regulation of melanin synthesis of B16 mouse cells by 1-${\alpha}$-25-dihydroxy vitamin D3 and retinoic acid. Cancer Res. 45, 1474-1478.
10 Hwang, J. H. and Lee, B. M. (2007) Inhibitory effects of plant extracts on tyrosinase, l-DOPA oxidation, and melanin synthesis. J. Toxicol. Environ. Health A 70, 393-407.   DOI
11 Jung, M. R., Lee, T. H., Bang, M. H., Kim, H. W., Son, Y. S., Chung, D. K. and Kim J. Y. (2012) Suppression of thymus- and activation-regulated chemokine (TARC/CCL17) production by 3-O-${\beta}$-Dglucopyanosylspinasterol via blocking NF-${\kappa}B$ and STAT1 signaling pathways in TNF-${\alpha}$ and IFN-${\gamma}$-induced HaCaT keratinocytes. Biochem. Biophys. Res. Commun. 427, 236-241.   DOI
12 Ko, H. H., Chiang, Y. C., Tsai, M. H., Liang, C. J. Hsu, L. F., Li, S. Y., Wang, M. C., Yen, F. L. and Lee C. W. (2014) Eupafolin, a skin whitening flavonoid isolated from Phyla nodiflora, down regulated melanogenesis : Role of MAPK and Akt pathways. J. Ethnopharmacol. 151, 386-393.   DOI
13 Kim, M. H., Jang, J. H., Oh, M. H., Heo, J. H. and Lee M. W. (2014) The comparision of DPPH-scavenging capacity and anti-inflammatory effects of phenolic compounds isolated from the stems of Stewartia koreana Nakai. Nat. Prod. Res. 28, 1409-1412.   DOI
14 Kim, W. S., Park, S. H., Ahn, S. J., Kim, H. K., Park, J. S., Lee, G. Y., Kim, K. J., Whang, K. K., Kang, S. H., Park, B. S. and Sung, J. H. (2008) Whitening effect of adipose-derived stem cells : A critical role of TGF-${\beta}1$. Biol. Pharm. Bull. 31, 606-610.   DOI
15 Kim, Y. J. and Uyama H. (2005) Tyrosinase inhibitors from natural and synthetic sources : Structure, inhibition mechanism and perspective for the future. Cell. Mol. Life Sci. 62, 1707-1723.   DOI
16 Lee, C. S., Jeong, E. B., Kim, Y. J., Lee, M. S., Seo, S. J., Park, W. H. and Lee M. W. (2013) Quercetin-3-O-(2"-O-galloyl)-${\alpha}$-L-rhamnopyranoside inhibits TNF-${\alpha}$-activated NF-${\kappa}B$-induced inflammatory mediator production by suppressing ERK activation. Int. Immunopharmacol. 16, 481-487.   DOI
17 Lee, S. I., Yang, J. H., and Kim, D. K. (2010a) Antioxidant flavonoids from the twigs of Stewartiakoreana. Biomol. Ther. 18, 191-196.   DOI
18 Lee, S. Y., Kim, K. H., Lee, I. K., Lee, K. H., Choi, S. U. and Lee, K. R. (2012a) A new flavonol glycoside from Hylomecon vernalis. Arch. Pharm. Res. 35, 415-421.   DOI   ScienceOn
19 Lee, T. H., Lee, G. W., Kim, C. W., Bang, M. H., Beak, N. I., Kim, S. H., Chung, D. H., and Kim, J. Y. (2010b) Stewartia Koreana extract stimulates proliferation and migration of human endothelial cells and induces neovasculization in vivo. Phytother. Res. 24, 20-25.   DOI
20 Lee, T. H., Jung, M. R., Bang, M. H., Chung, D. K. and Kim, J. Y. (2012b) Inhibitory effects of a spinasterol glycoside on lipopolysaccharideinduced production of nitric oxide and proinflammatory cytokines via down-regulating MAP kinase pathways and NF-${\kappa}B$ activation in RAW264.7 macrophage cells. Int. Immunopharmacol. 13, 264-270.   DOI
21 Liang, Z., Zhongyang, D., Peng, X., Yuhong, W., Zhenghua, G., Zhu, Q., Guiyang, S. and Kechang, Z. (2011) Methyl lucidenate F isolated from the ethanol-soluble-acidic components of Ganodermalucidumis a novel tyrosinaseinhibitor. Biotechnol. Bioprocess Eng. 16, 457-461.   DOI
22 Maeda, K. and Fukuda, M. (1991) In vitro effectiveness of several whitening cosmetic components in human melanocytes. J. Soc. Cosmet. Chem. 42, 361-368.
23 Meshram, G., Patil, B., Yadav, S., and Shined, D. (2011) Isolation and characterization of gallic acid from Terminalia bellerica and its effect on carbohydrate regulatory system in vitro. Int. J. Res. Ayurveda Pharm. 2, 559-562.
24 Momtaz, S., Lall, N. and Basson, A. (2008) Inhibitory activities of mushroom tyrosine and DOPA oxidation by plant extracts. S. Afr. J. Bot. 74, 577-582.   DOI
25 Ohad, N., Ramadan, M., Soliman, K., Snait, T. and Jacob, V. (2004) Chalcones as potent tyrosinase inhibitors: the effect of hydroxyl positions and numbers. Phytochemistry 65, 1389-1395.   DOI
26 Seo, S. Y., Sharma, V. K. and Sharma, N. (2003) Mushroom tyrosinase : recent prospects. J. Agric. Food Chem. 51, 2837-2853.   DOI
27 Park, C. K., Kim, H. J., Kwak, H. B., Lee, T. H., Bang, M. H., Kim, C. M., Lee, Y. K., Chung, D. H., Beak, N. I., Kim, J. Y., Lee, Z. H., and Kim, H. H. (2007) Inhibitory effects of Stewartia koreana on osteoclast differentiation and bone resorption. Int. Immunopharmacol. 7, 1507-1516.   DOI
28 Park, H. J., Park, K. K., Hwang, J. K., Chung, W. Y., Lee, S. E. and Lee S. K. (2010) Inhibitory effects of plant extracts on tyrosinase activity and melanin synthesis. Nat. Prod. Sci. 16, 133-139.
29 Pyo, M. K., Koo, Y. K. and Choi, H. S. (2002) Anti-platelet effect of the phenolic constituents isolated from the leaves of Magnolia obovota. Nat. Prod. Sci. 8, 147-151.
30 Solano, F., Briganti, S., Picardo, M. and Ghanem, G. (2006) Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res. 19, 550-571   DOI
31 Souichi, N., Hisashi, M., Yoshimi, O., Seikou, N., Fengming, X. and Masayuki Y. (2010) Melanogenesis inhibitors from the desert plant Anastatica hierochuntica in B16 melanoma cells. Bioorg. Med. Chem. 18, 2337-2345.   DOI
32 Stefania, B., Emanuela, C. and Mauro, P. (2003) Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 16, 101-110.   DOI
33 Su, T. R., Lin, J. J., Tsai, C. C., Huang, T. K., Yang, Z. Y., Wu, M. O., Zheng, Y. Q., Su, C. C. and Wu, Y. J. (2013) Inhibition of melanogenesis by gallicacid: possible involvement of the PI3K/Akt, MEK/ERK and Wnt/${\beta}$-catenin signaling pathways in B16F10 cells. Int. J. Mol. Sci. 14, 20443-20458.   DOI