Browse > Article
http://dx.doi.org/10.4062/biomolther.2010.18.4.463

Effects of Anti-B7.1/B7.2 Antibodies on LPS-Stimulated Macrophages  

Won, Tae-Joon (Cellular and Molecular Immunology Lab., College of Pharmacy, Chung-Ang University)
Huh, Yoon-Joo (Cellular and Molecular Immunology Lab., College of Pharmacy, Chung-Ang University)
Lim, Young-Tae (Cellular and Molecular Immunology Lab., College of Pharmacy, Chung-Ang University)
Song, Dong-Sup (Cellular and Molecular Immunology Lab., College of Pharmacy, Chung-Ang University)
Hwang, Kwang-Woo (Cellular and Molecular Immunology Lab., College of Pharmacy, Chung-Ang University)
Publication Information
Biomolecules & Therapeutics / v.18, no.4, 2010 , pp. 463-468 More about this Journal
Abstract
T-cell activation depends on signals received by the T-cell receptor and CD28 co-stimulatory receptor. Since B7.1 and B7.2 molecules expressed on the surface of antigen presenting cells provide co-stimulatory signals through CD28 to T-cells, an inhibitor of CD28-B7.1/B7.2 binding has been proposed as a therapeutic agent for suppression of excessive T-cell activity. Although anti-B7.1/B7.2 antibodies are known to block B7.1 and B7.2 molecules, their effects on intracellular events in antigen presenting cells remain unclear. In this study, anti-B7.1/B7.2 antibodies decreased secretion of nitric oxide and pro-inflammatory cytokines such as TNF-$\alpha$, IL-$1{\beta}$, and IL-12 in LPS-activated RAW264.7 macrophage-like cells and peritoneal macrophages. Moreover, anti-B7.1/B7.2 antibodies inhibited $I{\kappa}B{\alpha}$ phosphorylation and down-regulated expression of co-stimulatory molecules including B7.1, B7.2, and PD-L1 in LPS-stimulated peritoneal macrophages. These findings suggest that CTLA4-Ig and anti-B7.1/B7.2 antibodies may be candidates to treat chronic inflammatory diseases and autoimmune responses caused by excessive activation of both T-cells and macrophages.
Keywords
Anti-B7.1/B7.2 antibodies; RAW264.7; Peritoneal macrophage; Co-stimulatory molecule; Proinflammatory cytokine;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Park, C. G., Thiex, N. W., Lee, K. M., Szot, G. L., Bluestone, J. A. and Lee, K. D. (2003). Targeting and blocking B7 costimulatory molecules on antigen-presenting cells using CTLA4Ig- conjugated liposomes: in vitro characterization and in vivo factors affecting biodistribution. Pharm. Res. 20, 1239-1248.   DOI
2 Taylor, B. S., Kim, Y. M., Wang, Q., Shapiro, R. A., Billiar, T. R. and Geller, D. A. (1997). Nitric oxide down-regulates hepatocyte- inducible nitric oxide synthase gene expression. Arch. Surg. 132, 1177-1783.   DOI   ScienceOn
3 Trinchieri, G. (2003). Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3, 133-146.   DOI
4 Howard, L. M., Kohm, A. P., Castaneda, C. L. and Miller, S. D. (2005). Therapeutic blockade of TCR signal transduction and co-stimulation in autoimmune disease. Curr. Drug Targets Inflamm. Allergy 4, 205-216.   DOI
5 Ishida, Y., Agata, Y., Shibahara, K. and Honjo, T. (1992). Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11, 3887-3895.
6 Kim, K. S., Denton, M. D., Chandraker, A., Knoflach, A., Milord, R., Waaga, A. M., Turka, L. A., Russell, M. E., Peach, R. and Sayegh, M. H. (2001). CD28-B7-mediated T cell costimulation in chronic cardiac allograft rejection: differential role of B7-1 in initiation versus progression of graft arteriosclerosis. Am. J. Pathol. 158, 977-986.   DOI   ScienceOn
7 Martinez, F. O., Sica, A., Mantovani, A. and Locati, M. (2008). Macrophage activation and polarization. Front Biosci. 13, 453-461.   DOI
8 McAdam, A. J., Schweitzer, A. N. and Sharpe, A. H. (1998). The role of B7 co-stimulation in activation and differentiation of CD4+ and CD8+ T cells. Immunol. Rev. 165, 231-247.   DOI
9 Mellor, A. L., Baban, B., Chandler, P., Marshall, B., Jhaver, K., Hansen, A., Koni, P. A., Iwashima, M. and Munn, D. H. (2003). Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J. Immunol. 171, 1652-1655.   DOI
10 Menke, J., Lucas, J. A., Zeller, G. C., Keir, M. E., Huang, X. R., Tsuboi, N., Mayadas, T. N., Lan, H. Y., Sharpe, A. H. and Kelley, V. R. (2007). Programmed death 1 ligand (PD-L) 1 and PD- L2 limit autoimmune kidney disease: distinct roles. J. Immunol. 179, 7466-7477.   DOI
11 Ostrov, D. A., Shi, W., Schwartz, J. C., Almo, S. C. and Nathenson, S. G. (2000). Structure of murine CTLA-4 and its role in modulating T cell responsiveness. Science 290, 816-819.   DOI
12 Goronzy, J. J. and Weyand, C. M. (2008). T-cell co-stimulatory pathways in autoimmunity. Arthritis. Res. Ther. 10, S3.
13 Cooke, A. (2009). Infection and autoimmunity. Blood Cells Mol. Dis. 42, 105-107.
14 Fallarino, F., Grohmann, U., Hwang, K. W., Orabona, C., Vacca, C., Bianchi, R., Belladonna, M. L., Fioretti, M. C., Alegre, M. L. and Puccetti, P. (2003). Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 4, 1206-1212.   DOI
15 Gordon, S. (2007). The macrophage: past, present and future. Eur. J. Immunol. 37(Suppl 1), S9-17.   DOI