Browse > Article
http://dx.doi.org/10.4062/biomolther.2010.18.4.454

Neuroprotective Effects of Carpinus tschonoskii MAX on 6-Hydroxydopamine-Induced Death of PC12 Cells  

Kim, Min-Kyoung (Department of Pharmacology, School of Medicine, Institute of Medical Sciences, Jeju National University)
Kim, Sang-Cheol (Department of Pharmacology, School of Medicine, Institute of Medical Sciences, Jeju National University)
Kang, Jung-Il (Department of Pharmacology, School of Medicine, Institute of Medical Sciences, Jeju National University)
Boo, Hye-Jin (Department of Pharmacology, School of Medicine, Institute of Medical Sciences, Jeju National University)
Hyun, Jin-Won (Department of Biochemistry, School of Medicine, Institute of Medical Sciences, Jeju National University)
Koh, Young-Sang (Department of Microbiology, School of Medicine, Institute of Medical Sciences, Jeju National University)
Park, Deok-Bae (Department of Histology, School of Medicine, Institute of Medical Sciences, Jeju National University)
Yoo, Eun-Sook (Department of Pharmacology, School of Medicine, Institute of Medical Sciences, Jeju National University)
Kang, Ji-Hoon (Department of Neurology, School of Medicine, Institute of Medical Sciences, Jeju National University)
Kang, Hee-Kyoung (Department of Pharmacology, School of Medicine, Institute of Medical Sciences, Jeju National University)
Publication Information
Biomolecules & Therapeutics / v.18, no.4, 2010 , pp. 454-462 More about this Journal
Abstract
The present study investigated the neuroprotective effect of Carpinus tschonoskii MAX and its intracellular protective mechanism on 6-hydroxydopamine (6-OHDA)-induced oxidative damage in PC12 cells. We found that pretreatment of PC12 cells with C. tschonoskii extract significantly inhibited the cell death induced by 6-OHDA in a dose dependent manner. C. tschonoskii extract decreased 6-OHDA-induced apoptotic events such as chromatin condensation, DNA fragmentation, the decrease of Bcl-2/Bax ratio, caspase-3 activation and PARP cleavage. C. tschonoskii extract also reduced generation of 6-OHDA-induced reactive oxygen species and nitric oxide. Furthermore, C. tschonoskii extract up-regulated the myocyte enhancer factor 2 D (MEF2D), a critical transcription factor for neuronal survival, and Akt activity, whereas it inhibited the activity of ERK1/2 and JNK. The results suggest that C. tschonoskii extract decreases 6-OHDA-induced oxidative stress and could prevent PC12 cell apoptosis induced by 6-OHDA via the up-regulation of MEF2D and Akt activity, and thus may have application in developing therapeutic agents for Parkinson's disease.
Keywords
Carpinus tschonoskii MAX; 6-OHDA; PC12 cells; Apoptosis; MEF2D; Akt;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Smith, P. D., Mount, M. P., Shree, R., Callaghan, S., Slack, R. S., Anisman H., Vincent, I., Wang, X., Mao, Z. and Park, D. S. (2006). Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2. J. Neurosci. 11, 440-447.
2 Subramaniam, S. and Unsicker, K. (2006). Extracellular signalregulated kinase as an inducer of non-apoptotic neuronal death. Neuroscience 138, 1055-1065.   DOI
3 Tang, X., Wang, X., Gong, X., Tong, M., Park, D., Xia, Z. and Mao, Z. (2005). Cyclin-dependent kinase 5 mediates neurotoxin- induced degradation of the transcription factor myocyte enhancer factor 2. J. Neurosci. 25, 4823-4834.   DOI
4 Veeranna, G. J., Shetty, K. T., Takahashi, M., Grant, P. and Pant, H. C. (2000). Cdk5 and MAPK are associated with complexes of cytoskeletal proteins in rat brain. Mol. Brain Res. 76, 229-236.   DOI
5 Zhang, R., Kang, K. A., Piao, M. J., Park, J. W., Shin, T., Yoo, B. S., Yang, Y. T. and Hyun, J. W. (2007). Cytoprotective Activity of Carpinus tschonoskii against $H_2O_2$ Induced Oxidative Stress. Natural Product Sciences 13, 118-122.
6 Przedborski, S. and Ischiropoulos, H. (2005). Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson's disease. Antioxid. Redox Signal 7, 685-693.   DOI
7 Rosenkranz, A. R., Schmaldienst, S., Stuhlmeier, K. M., Chen, W., Knapp, W. and Zlabinger, G. J. (1992). A microplate assay for the detection of oxidative products using 2',7'- dichlorofluorescin-diacetate. J. Immunol. Methods. 25, 39-45.
8 Saito, Y., Nishio, K., Ogawa, Y., Kinumi, T., Yoshida, Y., Masuo, Y. and Niki, E. (2007). Molecular mechanisms of 6-hydroxydopamine- induced cytotoxicity in PC12 cells: involvement of hydrogen peroxide-dependent and -independent action. Free Radic. Biol. Med. 42, 675-685.   DOI
9 Sako, K., Fukuhara, S., Minami, T., Hamakubo, T., Song, H., Kodama, T., Fukamizu A., Gutkind, J. S., Koh, G. Y. and Mochizuki, N. (2009). Angiopoietin-1 induces Kruppel-like factor 2 expression through a phosphoinositide 3-kinase/ AKT-dependent activation of myocyte enhancer factor 2. J. Biol. Chem. 284, 5592-5601.   DOI
10 Scudiero, D. A., Shoemaker, R. H., Paull, K. D., Monks, A., Tierney, S., Nofziger, T. H., Currens, M. J., Seniff, D. and Boyd, M. R. (1988). Evaluation of a soluble tetrazolium/ formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res. 48, 4827-4833.
11 Shim, J. S., Kim, H. G., Ju, M. S., Choi, J. G., Jeong, S. Y. and Oh, M. S. (2009). Effects of the hook of Uncaria rhynchophylla on neurotoxicity in the 6-hydroxydopamine model of Parkinson's disease. J. Ethnopharmacol. 126, 361-365.   DOI
12 Shimoke, K. and Chiba, H. (2001). Nerve growth factor prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced cell death via the Akt pathway by suppressing caspase-3-like activity using PC12 cells: relevance to therapeutical application for Parkinson's disease. J. Neurosci. Res. 63, 402-409.   DOI
13 Liu, L., Cavanaugh, J. E., Wang, Y., Sakagami, H., Mao, Z. and Xia, Z. (2003). ERK5 activation of MEF2-mediated gene expression plays a critical role in BDNF-promoted survival of developing but not mature cortical neurons. Proc. Natl. Acad. Sci. USA. 100, 8532-8537.   DOI
14 Mercer, L. D., Kelly, B. L., Horne, M. K., Beart, P. M. (2005). Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. Biochem. Pharmacol. 69, 339-345.   DOI
15 Lotharius, J., Dugan, L. L. and O’Malley, K. L. (1999). Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J. Neurosci. 19, 1284-1293.   DOI
16 Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M. and Greenberg, M. E. (1999). Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286, 785-790.   DOI
17 Mao, Z. and Wiedmann, M. (1999). Calcineurin enhances MEF2 DNA binding activity in calcium-dependent survival of cerebellar granule neurons. J. Biol. Chem. 274, 31102-31107.   DOI
18 Nie, G., Jin, C., Cao, Y., Shen, S. and Zhao, B. (2002). Distinct effects of tea catechins on 6-hydroxydopamine-induced apoptosis in PC12 cells. Arch. Biochem. Biophys. 397, 84-90.   DOI
19 Okamoto, S., Krainc, D. and Sherman, K. (2000). Antiapoptotic role of the p38 mitogen-activated protein kinase-myocyte enhancer factor 2 transcription factor pathway during neuronal differentiation. Proc. Natl. Acad. Sci. USA. 97, 7561-7566   DOI
20 Perumal, A. S., Tordzro, W. K., Katz, M., Jackson-Lewis, V., Cooper, T. B., Fahn, S. and Cadet, J. L. (1989). Regional effects of 6-hydroxydopamine on free radical scavengers in the rat brain. Brain Res. 504, 139-141.   DOI
21 Greggio, E. and Singleton, A. (2007). Kinase signaling pathways as potential targets in the treatment of Parkinson's disease. Expert Rev. Proteomics. 4, 783-792.   DOI
22 Jiang, Z. and Yu, P. H. (2005). Involvement of extracellular signal-regulated kinases 1/2 and (phosphoinositide 3-kinase)/ Akt signal pathways in acquired resistance against neurotoxin of 6-hydroxydopamine in SH-SY5Y cells following cellcell interaction with astrocytes. Neuroscience 133, 405-411.   DOI
23 Heikkila, R. and Cohen, G. (1972). Inhibition of biogenic amine uptake by hydrogen peroxide: mechanism for toxic effects of 6-hydroxydopamine. Science 172, 1257-1258.
24 Jenner, P. and Olanow, C. W. (1996). Oxidative stress and the pathogenesis of Parkinson's disease. Neurology 47, S161-170.   DOI   ScienceOn
25 Jeon, J. I., Chang, C. S., Chen, Z. D. and Park, T. Y. (2007). Systematic aspects of foliar flavonoids in subsect. Carpinus (Carpinus, Betulaceae). Biochem. Syst. Ecol. 35, 606-613.   DOI
26 Kim, M. K., Kim, S. C., Kang, J. I., Hyun, J. H., Boo, H. J., Eun, S. Y., Park, D. B., Yoo, E. S., Kang, H. K. and Kang, J. H. 6-Hydroxydopamine-induced death of PC12 cells is mediated by MEF2D down-regulation. Neurochem. Res. In revision.
27 Kulich, S. M., Horbinski, C., Patel, M. and Chu, C. T. (2007). 6-Hydroxydopamine induces mitochondrial ERK activation. Free Radic. Biol. Med. 43, 372-383.   DOI
28 Kumar, R., Agarwal, M. L. and Seth, P. K. (1995). Free radicalgenerated neurotoxicity of 6-hydroxydopamine. J. Neurochem. 64, 1703-1707.   DOI
29 Li, M., Linseman, D. A., Allen, M. P., Meintzer, M. K., Wang, X., Laessig, T., Wierman, M. E. and Heidenreich, K. A. (2001). Myocyte enhancer factor 2A and 2D undergo phosphorylation and caspase-mediated degradation during apoptosis of rat cerebellar granule neurons. J. Neurosci. 21, 6544-6552.   DOI
30 Blum, D., Torch, S., Lambeng, N., Nissou, M., Benabid, A. L., Sadoul, R. and Verna J. M. (2001). Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Pro. Neurobiol. 65, 135-172.   DOI
31 Bournival, J., Quessy, P. and Martinoli, M. G. (2009). Protective effects of resveratrol and quercetin against MPP+ -induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cell Mol. Neurobiol. 29, 1169-1180.   DOI   ScienceOn
32 Bove, J., Prou, D., Perier, C. and Przedborski, S. (2005). Toxininduced models of Parkinson's disease. NeuroRx. 2, 484-494.   DOI
33 Brunet, A., Datta, S. R. and Greenberg, M. E. (2001). Transcriptiondependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr. Opin. Neurobiol. 11, 297-305.   DOI
34 Chang, C. S. and Jeon, J. I. (2004). Foliar flavonoids of Carpinus, sect. Distegocarpus in eastern Asia. Biochem. Syst. Ecol. 32, 35-44.   DOI
35 Choi, W. S., Yoon, S. Y., Oh, T. H., Choi, E. J., O'Malley, K. L. and Oh, Y. J. (1999). Two distinct mechanisms are involved in 6-hydroxydopamine- and MPP+-induced dopaminergic cell death: role of caspases, ROS and JNK. J. Neurosci. Res. 57, 86-94.   DOI
36 Chong, Z. Z., Li, F. and Maiese, K. (2005). Activating Akt and the brain’s resources to drive cellular survival and prevent inflammatory injury. Histol. Histopathol. 20, 299-315.
37 Decker, D. E., Althaus, J. S., Buxser, S. E., VonVoigtlander, P. F. and Ruppel, P. L. (1993). Competitive irreversible inhibition of dopamine uptake by 6-hydroxydopamine. Res. Commun. Chem. Pathol. Pharmacol. 79,195-208.
38 Black, B. L. and Olson, E. N. (1998). Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell Dev. Biol. 14, 167-196.   DOI
39 Gong, X., Tang, X., Wiedmann, M., Wang, X., Peng, J., Zheng, D., Blair, L. A., Marshall, J. and Mao, Z. (2003). Cdk5- mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron 38, 33-46.   DOI
40 Abad, F., Maroto, R., Lopez, M. G., Sánchez-García, P. and García, A. G. (1995). Pharmacological protection against the cytotoxicity of 6-hydroxydopamine and $H_2O_2$ in chromaffin cells. Eur. J. Pharmacol. 293, 55-64.   DOI   ScienceOn