Browse > Article
http://dx.doi.org/10.4062/biomolther.2010.18.3.336

Down-Regulation of Adipogenesis and Hyperglycemia in Diet-Induced Obesity Mouse Model by Aloe QDM  

Kong, Hyun-Seok (College of Pharmacy, Sahmyook University)
Lee, Sung-Won (College of Pharmacy, Sahmyook University)
Shin, Seul-Mee (College of Pharmacy, Sahmyook University)
Kwon, Jeung-Hak (College of Pharmacy, Sahmyook University)
Jo, Tae-Hyung (Univera Inc.)
Shin, Eun-Ju (Univera Inc.)
Shim, Kyu-Suk (Univera Inc.)
Park, Young-In (School of Life Sciences and Biotechnology, Korea University)
Lee, Chong-Kil (College of Pharmacy, Chungbuk National University)
Kim, Kyung-Jae (College of Pharmacy, Sahmyook University)
Publication Information
Biomolecules & Therapeutics / v.18, no.3, 2010 , pp. 336-342 More about this Journal
Abstract
Obesity-induced disorders contribute to the development of metabolic diseases such as insulin resistance, fatty liver diseases, and type 2 diabetes (T2D). In this study, we evaluated the hypoglycemic and hypolipidemic effects of aloe formula in high fat diet (HFD)-fed C57BL/6N mice. Male mice fed HFD for 28 weeks received a supplement of aloe formula, PAG, ALS, Aloe QDM, and an Aloe QDM complex for a further 8 weeks and were then compared with regular diet fed mice. After the experimental period, the blood glucose levels of the Aloe QDM complex-and PGZ-supplemented mice were significantly lower than those of the HFD-fed mice. Aloe formula, especially the Aloe QDM complex, and the PGZ treatment group profoundly affected the IPGTT and HOMA-IR. Immunochemistry was done for the morphological observation and the resulting sizes of adipocytes around the epididymis were significantly decreased when comparing the aloe formula-treated and HFD-fed groups. Further, aloe formula decreased mRNA expression of fatty acid synthesis enzymes and led to reduced hepatic steatosis in both liver and WAT. These results suggest that supplementation of Aloe QDM complex in the HFD-fed mice improved insulin resistance by lowering blood glucose levels and reducing adipocytes. Our data suggest that dietary aloe formula reduces obesity-induced glucose tolerance by suppressing fatty acid synthesis in the WAT and liver, both of which are important peripheral tissues affecting insulin resistance. The Aloe QDM complex could be used as a nutritional intervention against T2D.
Keywords
High-fat diet; Type 2 diabetes; Diet-induced obesity; Insulin sensitivity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 Srikanta, S., Ganda, O. P., Jackson, R. A., Gleason, R. E., Kaldany, A., Garovoy, M. R., Milford, E. L., Carpenter, C. B., Soeldner, J. S. and Eisenbarth, G. S. (1983). Type I diabetes mellitus in monozygotic twins: chronic progressive beta cell dysfunction. Ann. Intern. Med. 99, 320-326.   DOI   ScienceOn
2 Weyer, C., Funahashi, T., Tanaka, S., Hotta, K., Matsuzawa, Y., Pratley, R. E. and Tataranni, P. A. (2001). Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86, 1930-1935.   DOI
3 Xie, J. T., Aung, H. H., Wu, J. A., Attel, A. S. and Yuan, C. S. (2002). Effects of American ginseng berry extract on blood glucose levels in ob/ob mice. Am. J. Chin. Med. 30, 187-194.   DOI
4 Zhang, C. Y., Baffy, G., Perret, P., Krauss, S., Peroni, O., Grujic, D., Hagen, T., Vidal-Puig, A. J., Boss, O., Kim, Y. B., Zheng, X. X., Wheeler, M. B., Shulman, G. I., Chan, C. B. and Lowell, B. B. (2001). Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell 105, 745-755.   DOI
5 Kim, K., Kim, H., Kwon, J., Lee, S., Kong, H., Im, S. A., Lee, Y. H., Lee, Y. R., Oh, S. T., Jo, T. H., Park, Y. I., Lee, C. K. and Kim, K. (2009b). Hypoglycemic and hypolipidemic effects of processed Aloe vera gel in a mouse model of non-insulin-dependent diabetes mellitus. Phytomedicine 16, 856-863.   DOI
6 Klein, A. D. and Penneys, N. (1988). Aloe vera. J. Am. Acad. Dermatol. 18, 714-720.   DOI
7 Libby, P., Ridker, P. M. and Maseri, A. (2002). Inflammation and atherosclerosis. Circulation 105, 1135-1143.   DOI
8 Marcovecchio, M., Mohn, A. and Chiarelli, F. (2005). Type 2 diabetes mellitus in children and adolescents. J. Endocrinol. Invest. 28, 853-863.   DOI
9 Mertz, W. (1993). Chromium in human nutrition: a review. J. Nutr. 123, 626-633.   DOI
10 Mertz, W. and Schwarz, K. (1959). Relation of glucose tolerance factor to impaired intravenous glucose tolerance of rats on stock diets. Am. J. Physiol. 196, 614-6108.
11 Omodeo Sale, F., Marchesini, S., Fishman, P. H. and Berra, B. (1984). A sensitive enzymatic assay for determination of cholesterol in lipid extracts. Anal. Biochem. 142, 347-350.   DOI
12 Reynolds, T. and Dweck, A. C. (1999). Aloe vera leaf gel: a review update. J. Ethnopharmacol. 68, 3-37.   DOI
13 Rosenbloom, A. L., Joe, J. R., Young, R. S. and Winter, W. E. (1999). Emerging epidemic of type 2 diabetes in youth. Diabetes Care 22, 345-354.   DOI
14 Schwarz, K. and Mertz, W. (1959). Chromium (III) and the glucose tolerance factor. Arch. Biochem. Biophys. 85, 292-295.   DOI
15 DeFronzo, R. A., Bonadonna, R. C. and Ferrannini, E. (1992). Pathogenesis of NIDDM. A balanced overview. Diabetes Care. 15, 318-368.   DOI
16 Eizirik, D. L., Colli, M. L. and Ortis, F. (2009). The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat. Rev. Endocrinol. 5, 219-226.   DOI
17 Folch, J., Less, M. and Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497-509.
18 Katsuki, A., Sumida, Y., Gabazza, E. C., Murashima, S., Furuta, M., Araki-Sasaki, R., Hori, Y., Yano, Y. and Adachi, Y. (2001). Homeostasis model assessment is a reliable indicator of insulin resistance during follow-up of patients with type 2 diabetes. Diabetes Care 24, 362-365.   DOI
19 Hu, F. B., Manson, J. E., Stampfer, M. J., Colditz, G., Liu, S., Solomon, C. G. and Willett, W. C. (2001). Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N. Engl. J. Med. 345, 790-797.   DOI
20 Jullien, D. (2008). Pathogenesis of the metabolic syndrome. Ann. Dermatol. Venereol. 135, 243-248.   DOI
21 Kim, J. O., Kim, K. S., Lee, G. D., and Kwon, J. H. (2009a). Antihyperglycemic and antioxidative effects of new herbal formula in streptozotocin-induced diabetic rats. J. Med. Food 12, 728-735.   DOI
22 Anderson, R. A. (1995). Chromium, glucose tolerance, diabetes and lipid metabolism. J. Adv. Med. 8, 37-49.
23 Attele, A. S., Zhou, Y. P., Xie, J. T., Wu, J. A., Zhang, L., Dey, L., Pugh, W., Rue, P. A., Polonsky, K. S. and Yuan, C. S. (2002). Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabete 51, 1851-1858.   DOI
24 Anderson, R. A. (1993). Recent advances in the clinical and biochemical effects of chromium deficiency. Prog. Clin. Biol. Res. 380, 221-234.
25 Agarwal, O. P. (1985). Prevention of atheromatous heart disease. Angiology 36, 485-492.   DOI