Browse > Article
http://dx.doi.org/10.4062/biomolther.2008.16.4.377

Hexane Soluble Fraction of Chungpesagan-tang Exhibits Protective Effect against Hypoxia/Reoxygenation-Induced N2a Cell Damage  

Kim, Kyoung-A (Department of Oral and MaxilloFacial Radiology, School of Dentistry, Chonbuk National University)
Choi, Hwa-Jung (Department of Dental Pharmacology, School of Dentistry, Chonbuk National University)
Kim, Bang-Geul (Institute of Oral Bioscience, Chonbuk National University)
Park, Young-Ran (Institute of Oral Bioscience, Chonbuk National University)
Kim, Ji-Sun (College of Pharmacy, Sookmyung Women's University)
Ryu, Jae-Ha (College of Pharmacy, Sookmyung Women's University)
Soh, Yun-Jo (Department of Dental Pharmacology, School of Dentistry, Chonbuk National University)
Publication Information
Biomolecules & Therapeutics / v.16, no.4, 2008 , pp. 377-384 More about this Journal
Abstract
Chungpesagan-tang (CST) has been traditionally used in Korea as a therapeutic for cerebral ischemia. To understand the protective mechanism of CST on hypoxia/reoxygenation insults in N2a cells, the cell viability was determined with the treatment of water solution and several solvent fractions of CST. The highest cell viability occurred when the cells were treated with the hexane soluble fraction of CST. Hypoxia/reoxygenation insults were shown to decrease the glutathione peroxidase (GPx) activity and the level of glutathione (GSH) and increase the superoxide dismutase (SOD) activity. However, treatment with hexane soluble fraction of CST ranging from 0.1 ${\mu}g$/ml to 10 ${\mu}g$/ml recovered the activities of GPx and SOD and maintained the levels of MDA and GSH at control levels. While hypoxia/reoxygenation insults induced the activation of ERK in N2a cells, treatment with the hexane soluble fraction of CST inhibited the activation of ERK in a concentration dependent manner. In this study, we were able to demonstrate that the bioactive compounds of CST can be effectively transferred into the hexane soluble fraction, and more importantly that CST exhibits protective effects against hypoxia/reoxygenation insults most likely by recovering redox enzyme activities.
Keywords
Chungpesagan-tang; Hypoxia; SOD; GSH; ROS;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Aebi, H. (1984). Catalase in vitro. Methods Enzymol. 105, 121-126   DOI
2 Beitner-Johnson, D., Ferguson, T., Rust, R. T., Kobayashi, S., and Millhorn, D. E. (2002). Calcium-dependent activation of Pyk2 by hypoxia. Cell Signal. 14, 133-137   DOI   ScienceOn
3 Bramlett, H. M. and Dietrich, W. D. (2004). Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J. Cereb. Blood Flow Metab. 24, 133-150   DOI   ScienceOn
4 Flaskos, J., McLean, W. G., Fowler, M. J. and Hargreaves, A. J. (1998). Tricresyl phosphate inhibits the formation of axon-like processes and disrupts neurofilaments in cultured mouse N2a and rat PC12 cells. Neurosci. Lett. 242, 101–104   DOI   ScienceOn
5 Gong, X. and Sucher, N. J. (1999). Stroke therapy in traditional Chinese medicine (TCM): prospects for drug discovery and development. Trends Pharmacol. Sci. 20, 191-196   DOI   ScienceOn
6 Hong, S. G., Kang, B. J. and Cho, D. W. (2000). Inhibitory effects of Chungpesagan-tang on ischemia/reperfusioninduced inflammatory responses in vitro. KIOM Journal 6, 81-87   과학기술학회마을
7 Hong, S. G., Kang, B. J., Kim, Y. J., Kang, S. M. and Cho, D. W. (1999). Protective effects of Chungpesagan-tang against ischemia/reperfusion induced cell injury. KIOM Journal 5, 111-117   과학기술학회마을
8 Huet, O., Petit, J. M., Ratinaud, M. H. and Julien, R. (1992). NADH-dependent dehydrogenase activity estimation by flow cytometric analysis of 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Cytometry 13, 532-539   DOI   ScienceOn
9 Inoue, M., Watanabe, N., Morino, Y., Tanaka, Y., Amachi, T. and Sasaki, J. (1990). Inhibition of oxygen toxicity by targeting superoxide dismutase to endothelial cell surface. FEBS Lett. 269, 89-92   DOI   ScienceOn
10 Kuroda, S. and Siesjo, B. K. (1997). Reperfusion damage following focal ischemia: pathophysiology and therapeutic windows. Clin. Neurosci. 4, 199-212
11 Kawase, M., Murakami, K., Fujimura, M., Morita-Fujimura, Y., Gasche, Y., Kondo, T., Scott, R. W. and Chan, P. H. (1999). Exacerbation of delayed cell injury after transient global ischemia in mutant mice with CuZn superoxide dismutase deficiency. Stroke 30, 1962-1968   DOI   ScienceOn
12 Murakami, K., Kondo, T., Epstein, C.J. and Chan, P. H. (1997). Overexpression of CuZn-superoxide dismutase reduces hippocampal injury after global ischemia in transgenic mice. Stroke 28, 1797-1804   DOI   ScienceOn
13 Lee, H. C., Kim, D. W., Jung, K. Y., Park, I. C., Park, M. J., Kim, M. S., Woo, S. H., Rhee, C. H., Yoo, H., Lee, S. H. and Hong, S. I. (2004). Increased expression of antioxidant enzymes in radioresistant variant from U251 human glioblastoma cell line. Int. J. Mol. Med. 13, 883-887
14 Li, C. and Jackson, R. M. (2002). Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am. J. Physiol. Cell. Physiol. 282, C227-241   DOI   ScienceOn
15 Lum, H. and Roebuck, K. A. (2001). Oxidant stress and endothelial cell dysfunction. Am. J. Physiol. Cell. Physiol. 280, C719-741   DOI
16 Sies, H. and Stahl, W. (1995). Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am. J. Clin. Nutr. 62, 1315S-1321S   DOI
17 Sugawara, T., Fujimura, M., Noshita, N., Kim, G. W., Saito, A., Hayashi, T., Narasimhan, P., Maier, C.M. and Chan, P. H. (2004). Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx. 1, 17-25   DOI   ScienceOn
18 Ushio-Fukai, M. and Alexander, R. W. (2004). Reactive oxygen species as mediators of angiogenesis signaling: role of NAD(P)H oxidase. Mol. Cell Biochem. 264, 85-97   DOI
19 Wang, Z. T., Ng, T. B. and Xu, G. J. (1995). Recent advances in pharmacognosy research in China. Gen. Pharmacol. 26, 1211-1224   DOI   ScienceOn
20 Venardos, K. M., Perkins, A., Headrick, J. and Kaye, D. M. (2007). Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: a review. Curr. Med. Chem. 14, 1539-1549   DOI   ScienceOn
21 Loh, K. P., Huang, S. H., De Silva, R., Tan, B.K. and Zhu, Y. Z. (2006). Oxidative stress: apoptosis in neuronal injury. Curr. Alzheimer Res. 3, 327-337   DOI   ScienceOn
22 Tabakman, R., Jiang, H., Levine, R. A., Kohen, R., and Lazarovici, P. (2004). Apoptotic characteristics of cell death and the neuroprotective effect of homocarnosine on pheochromocytoma PC12 cells exposed to ischemia. J. Neurosci. Res. 75, 499-507   DOI   ScienceOn
23 Ilhan, A., Koltuksuz, U., Ozen, S., Uz, E., Ciralik, H. and Akyol, O. (1999). The effects of caffeic acid phenethyl ester (CAPE) on spinal cord ischemia/reperfusion injury in rabbits. Eur. J. Cardiothorac. Surg. 16, 458-463   DOI   ScienceOn
24 Prasad, K., Mantha, S. V., Muir, A. D. and Westcott, N. D. (2000). Protective effect of secoisolariciresinol diglucoside against streptozotocin-induced diabetes and its mechanism. Mol. Cell. Biochem. 206, 141-149   DOI   ScienceOn
25 Traystman, R. J., Kirsch, J. R. and Koehler, R. C. (1991). Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J. Appl. Physiol. 71, 1185-1195   DOI
26 Floyd, R. A. (1999). Neuroinflammatory processes are important in neurodegenerative diseases: an hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Radic. Biol. Med. 26, 1346-1355   DOI   ScienceOn
27 Chan, P. H. (2001). Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow Metab. 21, 2-14   DOI   ScienceOn
28 Huang, Y. and McNamara, J. O. (2004). Ischemic stroke: "acidotoxicity" is a perpetrator. Cell 118, 665-666   DOI   ScienceOn