Browse > Article

Effects of GABAB Receptor Antagonist on the Cardiovascular Response of Adenosine A1 and Adenosine A2 Receptor Agonist in the Spinal Cord of the Rats  

Shin, In-Chul (Department of Pharmacology, College of Medicine, Hanyang University)
Publication Information
Biomolecules & Therapeutics / v.13, no.3, 2005 , pp. 138-142 More about this Journal
Abstract
Adenosine and GABA are known to be major inhitory neurotransmitters in the central nervous system and its receptors mediate various neurophamacological effects including cardiovascular modulatory effects. Inhibitory cardiovascular effects induced by intrathecal (i.t.) administration of adenosine $A_1$ receptor agonist and its modulation by cyclic AMP was suggested by our previous report. In this experiment, we examined the modulation of cardiovascular effects of adenosine $A_1$ receptor and adenosine $A_2$ receptor by $GABA_B$ receptors antagonist in the spinal cord. I.t. administration of 10 nmol of $N^6$-cyclohexyladenosine (CHA, an adenosine $A_1$ receptor agonist), I.t. administration of 2 nmol of 5'-(N-cyclopropyl)-carboxamidoadenosine (CPCA, an adenosine $A_2$ receptor agonist), pretreatment with 5-aminovaleric acid (a $GABA_B$ receptor antagonist, 50 nmol, i.t.) prior to administration of CHA and pretreatment with 5-aminovaleric acid (a $GABA_B$ receptor antagonist, 50 nmol, i.t.) prior to administration of CPCA were performed in anesthetized, artificially ventilated Sprague-Dawley rats. I.t. administration of 50 nmol of 5-aminovaleric acid significantly attenuated the inhibitory cardiovascular effects of CHA but did not attenuated the inhibitory cardiovascular effects of CPCA. It is suggested that cardiovascular responses of adenosine $A_1$ receptor is modulated by $GABA_B$ receptor and adenosine $A_2$ receptor is not modulated by $GABA_B$ receptor in the spinal cord.
Keywords
spinal cord; blood pressure; heart rate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bacon, S. J. and Smith, A. D. (1988). Preganglionic sympathetic neurons innervating the rat adrenal medulla : immunocytochemical evidences of synaptic input from nerve terminals containing substance-P, GABA or 5-hydroxytryptamine. J. Auton. Nerv. Syst. 24, 97-100   DOI   ScienceOn
2 Barraco, R. A., Campbell, W. R., Parizon, M.,, Shoener, E. P. and Shein, S. E. (1987). Cardiovascular effects of microinjections of adenosine analogs into the fourth ventricle of rats. Brain Res. 424, 17-25   DOI   ScienceOn
3 Barraco, R. A, Janusz, C. A., Parizon, M., Posalek, P. M and Roberts, P. A. (1988). Cardiovascular effects of microinjection of adenosine into the nucleus tractus solitarius. Brain Res. Bull. 20, 129-132   DOI   ScienceOn
4 Barraco, R. A, .Janusz, C. A, Shoener, E. P. and Simpson. L. L. (1990). Cardiorespiratory function is altered by picomol injections of 5'-N-ethylcarboxamidoadenosine into the nucleus tractus solitarius of rats. Brain Res. 507, 234-246   DOI   ScienceOn
5 Brown, S. J., James, S., Reddington, M. and Richardson, P. J. (1990). Both A1 and $A_{2a}$ purine receptors regulate striatal acetylcholine release. J. Neurochem. 55, 31 -38   DOI
6 Bruns, R. F., Fergus, J. H., Badger, E. W., Bristol, J. A., Santay, L. A., Hartman, J. D., Hays, S. J. and Huang, C. C. (1987). Binding of the $A_1$-selective adenosine antagonist 8-cyclopentyl-1,3-diproxylxanthine to rat brain membranes. Naunyn-Schmiedebergs Arch. Pharmacol. 335, 59-63   DOI   ScienceOn
7 Gerber, U. and Gahwiler, B. H. (1994). GABAB and adenosine receptors mediate enhancement of the $K^+$ current, $I_{AHP}$, by reducing adenylyl cyclase activity in rat CA3 hippocampal neurons. J. Neurophysiol. 72, 2360-2367   DOI
8 Goodman, R. R. and Snyder, S. H. (1982). Autoradiographic localization of adenosine receptor in rat brain using [$^3H$] cyciohexyladenosine. J. Neurosci. 2, 1230-1241
9 Gordon, F. J. (1985). Spinal GABA receptors and central cardiovascular control, Brain Res. 328, 165-169   DOI   ScienceOn
10 Hassessian, H., Prat, A., Champlain, J. D. and Couture, R (1991). Regulation of cardiovascular sympathetic neuons by substance P and gamma aminobutyric acid in rat spinal cord. Eur. J. Pharmacol. 202, 51-60   DOI   ScienceOn
11 Hong, Y. and Henry, J. L. (1991). Phaclofen-reversible effects of GABA in the spinal cord of the rat. Eur. J. Pharmacol. 201, 171-177   DOI   ScienceOn
12 Kamachi, G. L. and Ticku, M. K. (1991). A functional assay to measure postsynaptic gamma-aminobutyric $acid_B$ response in cultured spinal cord neurons : Heterologous regulation of the same $K^+$ channel. J. Phamacol. Exp. Ther. 256, 426-431
13 Karbon, E. W. and Enna, S. J. (1985). Characterization of the relationship between gamma-aminobutyric $acid_B$, agonist and transmitter-coupled cyclic nucleotide-generating systems in rat brain. Mol. Pharmacol. 27, 53-59
14 Koh, H. C., Shin, I. C., Hwang, S. J. and Paik, D. J. (1996). Modification of cardiovascular response of adenosine $A_1$ receptor agonist by cyclic AMP in the spinal cord of the rats. Neurosci. Lett. 219, 195-198   DOI   ScienceOn
15 Lee, K. S. Reddington, M., Schubert, R. and Kreutzberg, G (1983). Regulation of the strength of adenosine modulation in the hippocampus by a differential distribution of the density of $A_1$ receptor. Brain Res. 260, 156-159   DOI   ScienceOn
16 Mosqueda, G. R., Tseng, C. J., Appalsamy, M., Beck, C. and Robertson, D. (1991). Cardiovascular excitatory effects of adenosine in the nucleus of the solitary tract. Hypertension 18, 494-502   DOI
17 Phillis J. W., Edstrom, J. P. Kostopoulos, G. K. and Kirkpatrick, J. R. (1979). Effects of adenosine and adenine nucleotides on synaptic trasnmission in the cerebral cortex, Can. J. Pharmacol. 57, 1289-1312   DOI   ScienceOn
18 Van Calker, D., Muller, M. and Hamprecht, B. (1979). Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J. Neurochem. 33, 999-1005   DOI
19 Sighart, W. (1992). $GABA_A$ receptors : ligand-gated $Cl^-$ ion channels modulated by multiple drug binding sites. Trends Pharmacol. Sci. 13, 446-450   DOI   ScienceOn
20 Stella, L. Berrino, L., Maione, S., de Novellis, F. and Rossi, F. (1993). Cardiovascular effects of adenosine and its analogue in anesthetized rats. Life Sci. 53, 755-763   DOI   ScienceOn
21 Daly, J. W., Butts-Lamb, P. and Padgett, W. (1983). Subclass of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines. Cell Mol. Biol. 3, 69-80
22 Coardetti, R., Lo Conte, G., Moroni, F., Passani, M. B. and Peteu, G. (1984). Adenosine decrease aspartate and glutamate release from rat hippocampal slices. Eur. J. Pharmacol. 104, 19-26   DOI   ScienceOn
23 Kamachi, G. L. and Ticku, M. K. (1990). Fuctional coupling of presynaptic $GABA_B$ receptors with voltage-gated $Ca^{2+}$ channel : Regulation by protein kinase A and C in cultured spinal cord neurons. Mol. Pharmacol. 38, 342-347
24 Choca, J. I., Proudfit, H. K. and Green, R. D. (1987). Identification of $A_1$ and $A_2$ adenosine receptors in the rat spinal cord, J. Pharmacol. Exp. Ther. 242, 905-910
25 Stone, G. A., Jarvis, M. F., Sills, M. S., Weeks, B., Snowhill, E. W. and Williams, M. (1988). Species differences in high affinity adenosine $A_2$ binding sites in striatal membranes from mammalian brain. Drug Dev. Res. 15, 31-46   DOI
26 Koh, H. C., Lee, T. K., Kang, J. S., Lee, C. H., Lee, H., Paik, D. J. and Shin, I. C. (2000). Modification of cardiovascular response of adenosine $A_2$ receptor agonist by adenylate cyclase in the spinal cord of the rats. Neurosci. Lett. 293, 45-48   DOI   ScienceOn
27 Londos, S., Cooper, D. M. F. and Wolff, J. (1987). Subclasses of external adenosine receptors. Proc. Natl. Acad. Sci. USA 77, 2551-2554   DOI   ScienceOn