Browse > Article

Effect of Tea Polyphenols on Conversion of Nicotine to Cotinine  

Lee, Dong-Hee (Department of Life Science, The University of Seoul)
Kim, Ha-Won (Department of Life Science, The University of Seoul)
Publication Information
Biomolecules & Therapeutics / v.11, no.4, 2003 , pp. 238-244 More about this Journal
Abstract
Nicotine is one of the major hazardous components in cigarettc smoke. Nicotine deals a harmful effect to smokers and passive smokers due to its rapid conversion to various carcinogenic metabolites. Nitrosamine-4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is believed to cause lung cancers among the nicotine-derived carcinogens. Recent studies report that NNK synthesis can be inhibited by the metabolism pathway to produce a stable metabolite cotinine from nicotine. Tea polyphenols have been known to contain factors to prevent cancers and to retard progression of cancers. This study aims to correlate tea polyphenol's potential for cancer prevention with an accelerated formation of cotinine. The conversion from nicotine to cotinine in the presence of tea extracts or three polyphenols (Catechin, epicatechin gallate, epigallocatechin gallate) was measured in established cell lines and in Xenopus oocytes. Among three lines of cell used, PLC/PRF5 and HEK293 cells showed a fast turnover from nicotine to cotinine while HepG2 cell line showed a marginal difference between groups treated and non-treated with tea polyphenols. When Xenopus oocytes were microinjected with nicotine, tea polyphenols appear to accelerate the conversion of nicotine to cotinine. Among the polyphenols tested in this study, (+)-catechin showed the best efficiency overall in accelerating conversion from nicotine to cotinine both in the cell lines and in the oocytes. In summary, the present study indicated that tea polyphenols have a positive effect on conversion of nicotine to cotinine.
Keywords
Xenopus oocytes; polyphenols; cigarette smoking; green tea; nicotine; cotinine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barlow, R. D., Thompson, P. A., and Stone, R. B. (1987) Simul taneous determination of nicotine, cotinine and five additional nicotine metabolites in the urine of smokers using pre-column derivatisation and high- performance liquid chromatography. Br. J, Chromatogr. 419, 375-80   DOI   ScienceOn
2 Blackbum, C. W., Peterson, C. A., Hales, H. A., Carrell, D. T, Jones, K. P., Urry, R. L., and Peterson, C. M. (1994) Nicotine, but not cotinine, has a direct toxic effect on ovarian function in the immature gonadotropin-slimulated rat. Reprod. ToxicoI., 8(4), 325-31   DOI   ScienceOn
3 Brunnemann, K. D., Prokopczyk, B., Djordjevic, M. V., and Hoffmann, D. (1996) Formation and analysis of tobacco-specific Nnitrosamnes. Crit. Rev. Toxicol. 26(2), 121-37   DOI   ScienceOn
4 Carmella, S.G., Borukhova, A., Akerkar, S. A., and Hecht, S. S. (1997) Analysis of human urine for pyridine-N-oxide metabo-liles of 4-(methy1nitrosamino)-1-(3-pyridyl)-I-butanone, a tobacco-specific lung carcinogen. Cancer Epidemiol. Biomarkers Prev. 6(2), 113-20
5 Carmella, S. G., Borukhova, A., Desai, D., and Hecht, S.S. (1997) Evidence for endogenous formation of tobacco-specific nitrosamines in rats treated with tobacco alkaloids and sodium nitrite. Carcinogenesis, 18(3), 587-92   DOI   ScienceOn
6 Chung, F. L. (1999) The prevention of lung cancer induced by a tobacco-specific carcinogen in rodents by green and black tea. Proc. Soc. Exp. Biol. Med. 220(4), 244-8   DOI   ScienceOn
7 Chung, F. L., Wang M., Rivenson, A., latropoulos, M. J., Rein-hardt, J. C., Pittman, B., Ho, C, T., and Amin, S. G. (1998) Inhibition of lung carcinogenesis by black tea in Fischer rats treated with a tobacco-specific carcinogen: caffeine as animportant constituent. Cancer Res., 58(18), 4096-101
8 Fujiki, H., Suganuma, M., Okabe, S., Sueoka, N., Komori, A., Sueoka, E., Kozu, T., Tada, Y., Suga, K., Imai, K., and Naka chi, K. (1998) Cancer inhibition by green tea. Mutal. Res. 18, 307-10
9 Gupta, P.C., Murti, P.R., and Bhonsle, R.B. (1996) Epidemiology of cancer by tobacco products and the significance of TSNA. Crit. Rev. Toxicol. 26(2), 183-98   DOI   ScienceOn
10 Hasseus, B., Wallstrom, M., Osterdahl, B. G., Hirsch J. M., and Jontell M. (1997) Immunotoxic effects of smokeless tobacco on the accessory cell function of rat oral epithelium. Eur. J. Oral Sci., 105(1), 45-51   DOI   ScienceOn
11 Hecht, S.S. (1997) Tobacco and cancer: approaches using carcin-ogen biomarkers and chemoprevention. Ann. N. Y. Acad. Sci. 833, 91-111   DOI
12 Hecht, S. S. (1999) Tobacco smoke carcinogens and lung cancer. Natl. Cancer Inst. 91(14), 1194-1210   DOI
13 Hoffmann, D., Melikian A. A., and Wynder, E. L. (1996) Scientific challenges in environmental carcinogenesis. Prev. Med. 25(1), 14-22   DOI   ScienceOn
14 Hoffmann, D., Rivenson, A., and Hecht, S.S. (1996) The biologi-cal significance of tobacco-specific N-nitrosamines: smoking and adenocarcinoma of the lung. Crit. Rev. Toxicol. 26(2), 199-211   DOI   ScienceOn
15 Kalra, R., Singh, S. R, Savage, S. M., Sopori, M. L. and Finch, G.L. (2000), Effects of cigarette smoke on immune response: chronic exposure to cigarette smoke impairs antigen-mediated signaling in T cells and depletes IP3-sensitive Ca(2+) stores. J. Pharmacol. Exp. Ther 293(1), 166-71
16 Lackmann, G. M., Salzberger, U., Tollner, U., Chen, M., Carmella, S.G., and Hecht, S.S. (1999) Metabolites of a tobacco-specific carcinogen in urine from newborns. J. Natl. Cancer Inst. 91(5), 459-65   DOI   ScienceOn
17 Lee, C. K., Fulp, C., Bombick, B, R., and Doolittle, D. J. (1996) Inhibition of mutagenicity of N-nitrosamines by tobacco smoke and its constituents. Mutat. Res. 367(2), 83-92   DOI   ScienceOn
18 Malik, A., Azam, S., Hadi, N., and Hadi, SM (2003) DNA degra-dation by water extract of green tea in the presence of copperions: implications for anticancer properties. Phytother Res. 17(4):358-63   DOI   ScienceOn
19 Lee, D. H. (1998) Characterization of 27K zein as a transmembrane protein. J. Biochem. Mol. Biol. 31(2), 196-200
20 Lee, D. H., Selester, B., and Pedersen, K. (1995) Free movement of 27K zein in the endoplasmic reticulum. Protein Eng. 9, 91-96
21 Olincy, A., Young, D. A., and Freedman, R. (1997) Increased lev-els of the nicotine metabolite cotinine in schizophrenic smok-ers compared to other smokers. Biol. Psychiatry 42(1), 1-5   DOI   ScienceOn
22 Palermo CM, Hemando JI, Dertinger SD, Kende AS, and Gasiewicz TA. (2003) Identification of potential aryl hydrocar-bon receptor antagonists in green tea. Chem Res Toxicol. 16(7), 865-72   DOI   ScienceOn
23 Prokopczyk, B., Cox, J.E., Hoffmann, D., and Waggoner S.E. (1997) Identification of tobacco-specific carcinogen in the cer-vical mucus of smokers and nonsmokers. J. Natl. Cancer Inst. 89(12), 868-73   DOI   ScienceOn
24 Robert, D. (1995) Colorimetric mcthod for measuring cotinine. the primary mctabolite of nicotine Clin. Chim. Acta. 165, 45-52
25 Schuller H. M., McGavin, M. D., Orloff, M., Riechert, A., and Porter, B. (1995) Simultaneous exposure to nicotine and hyperoxia causes tumors in hamsters. Lab. Invest, 73(3), 448-56
26 Schuller, H. M., and Orlojff M. (1998) Tobacco-specific carcinogenie nitrosamines. Ligands for nicotinic acetylchoine receptors in human lung cancer cells. Biochem. Pharmacol. 55(9), 1377-84   DOI   ScienceOn
27 Trushin, N., and Hecht, S.S. (1998) Stereoselective metabolism of nicotine and tobacco-specific N-nitrosamines to 4-hydroxy-4-(3-pyridy1)butanoic acid in rats. Chem. Res. Toxicol.,12(2), 164-71
28 Wynder, E. L., and Muscat, J. E. (1995) The changing epidemiology of smoking and lung cancer histology. Environ. Health. Perspect., 103 Suppl. 8,143-8
29 Willers, S., Skarping, G., Dalene, M., and Skerfving, S. (1995) Urinary cotinine in children and adults during and after sermexperimental exposure to environmental tobacco smoke. Arch. Environ. 50(2), 130-8   DOI   ScienceOn
30 Witschi, H., Espiritu, I., Maronpot, R. R., Pinkerton, K. E., and Jones, A.D. (1997) The carcinogenic potential of the gas phase of environmental tobacco smoke. Carcinogenesis 18(11), 2035-42   DOI   ScienceOn