Browse > Article
http://dx.doi.org/10.7783/KJMCS.2019.27.3.208

Purification and Identification of Cytotoxic Compounds from the Root of Rumex crispus L.  

Cho, Yong Beom (Department of Industrial Plant Science and Technology, Chungbuk National University)
Kim, Jae Yeon (Department of Industrial Plant Science and Technology, Chungbuk National University)
Kwon, Nam Woo (Department of Industrial Plant Science and Technology, Chungbuk National University)
Hwang, Bang Yeon (Department of Pharmacy, Chungbuk National University)
Kim, Jun Gu (Department of Pharmacy, Chungbuk National University)
Woo, Sun Hee (Department of Crop Science, Chungbuk National University)
Lee, Moon Soon (Department of Industrial Plant Science and Technology, Chungbuk National University)
Publication Information
Korean Journal of Medicinal Crop Science / v.27, no.3, 2019 , pp. 208-217 More about this Journal
Abstract
Background: In the present study, we identified two cytotoxic compounds from the root of Rumex crispus L. using a bioassay-based method. Methods and Results: Compared with the other fractions, the diethyl ether ($Et_2O$) fraction of R. crispus root extract exhibited the strongest of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging effect [scavenging concentration 50% $(SC_{50})=63.8{\pm}1.47{\mu}g/m{\ell}$], nitric oxide (NO) production inhibitory effect on the mouse macrophage cell line RAW264.7 [inhibitory concentration 50% $(IC_{50})=60.9{\pm}7.52{\mu}g/m{\ell}$] and cytotoxicity effect on the human hepatoma cell line, HepG2 [lethal concentration 50% $(LC_{50})=115.4{\pm}1.86{\mu}g/m{\ell}$]. According to the bioassay-based method, two cytotoxic compounds were purified from the $Et_2O$ fraction by using column chromatography and preparative high performance liquid chromatography (prep-HPLC). These two compounds were identified as parietin and chrysophanol by using nuclear magnetic resonance (NMR) and liquid chromatography quadruple time of flight mass spectrometry (LC-QTOF-MS). In addition, both parietin and chrysophanol exhibited a cytotoxicity effect on HepG2 cells, their $LC_{50}$ values were $169.1{\pm}17.67{\mu}M$ and $111.5{\pm}6.62{\mu}M$, respectively. Conclusions: Parietin and chrysophanol isolated from the $Et_2O$ fraction of the R. crispus root extract showed cytotoxicity in HepG2 cell.
Keywords
Rumex crispus L.; Chrysophanol; Cytotoxicity; HepG2; Parietin;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Elzaawely AA, Xuan TD and Tawata S. (2005). Antioxidant and antibacterial activities of Rumex japonicus HOUTT. aerial parts. Biological and Pharmaceutical Bulletin. 28:2225-2230.   DOI
2 Gautam R, Karkhile KV, Bhutani KK and Jachak SM. (2010). Anti-inflammatory, cyclooxygenase(COX)-2, COX-1 inhibitory, and free radical scavenging effects of Rumex nepalensis. Planta medica. 76:1564-1569.   DOI
3 Gerlier D and Thomasset N. (1986). Use of MTT colorimetric assay to measure cell activation. Journal of Immunological Methods. 94:57-63.   DOI
4 Hwang SW, Ha TJ, Lee JR, Lee J, Nam SH, Park KH and Yang MS. (2004). Isolation of anthraquinone derivatives from the root of Rumex japonicus H. Journal of Applied Biological Chemistry. 47:274-278.
5 Im NK, Jung YS, Choi JH, Yu MH and Jeong GS. (2014). Inhibitory effect of the leaves of Rumex crispus L. on LPSinduced nitric oxide production and the expression of iNOS and COX-2 in macrophages. Natural Product Sciences. 20:51-57.
6 Kim BM, Kim GT, Kim EJ, Lim EG, Kim SY and Kim YM. (2016a). Extract from Artemisia annua Linne induces apoptosis through the mitochondrial signaling pathway in HepG2 cells. Journal of the Korean Society of Food Science and Nutrition. 45:1708-1716.   DOI
7 Kim EJ, Kim GT, Kim BM, Lim EG, Ha SH, Kim SY and Kim YM. (2016b). Apoptotic effect of extract from Artemisia annua Linne by Akt/mTOR/GSK-$3{\beta}$ signal pathway in Hep3B human hepatoma cells. Journal of Life Science. 26:764-771.   DOI
8 Ko SK, Kim YC, Kim JS, Kim CM, Ro JS, Moon YH, Park JH, Seo EK, Sung HK, Shin SW, Yang KS, Oh OJ, Woo ER, Lee SK, Lee SH, Lee JK, Lim DS, Lim JP, Chung SR, Hong SH and Hwang WK. (2009). General medicinal botany. Hakchangsa. Seoul, Korea. p.153.
9 Krinsky NI. (1989). Antioxidant functions of carotenoids. Free Radical Biology and Medicine. 7:617-635.   DOI
10 Lee NJ, Choi JH, Koo BS, Ryu SY, Han YH, Lee SI and Lee DU. (2005). Antimutagenicity and cytotoxicity of the constituents from the aerial parts of Rumex acetosa. Biological and Pharmaceutical Bulletin. 28:2158-2161.   DOI
11 Lee SS, Kim DH, Yim DS and Lee SY. (2007). Anti-inflammatory, analgesic and hepatoprotective effect of semen of Rumex crispus. Korean Journal of Pharmacognosy. 38:334-338.
12 Lin R, Elf S, Shan C, Kang HB, Ji Q, Zhou L, Hitosugi T, Zhang L, Zhang S, Seo JH, Xie J, Tucker M, Gu TL, Sudderth J, Jiang L, Mitsche M, de Berardinis RJ, Wu S, Li Y, Mao H, Chen PR, Wang D, Chen GZ, Hurwitz SJ, Lonial S, Khoury HJ, Arellano ML, Khuri FR, Lee BH, Lei Q, Brat DJ, Ye K, Boggon TJ, He C, Kang SM, Fan J and Chen J. (2015). 6-phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signaling. Nature Cell Biology. 17:1484-1496   DOI
13 Lowenstein CJ, Dinerman JL and Snyder SH. (1994). Nitric oxide: A physiologic messenger. Annals of Internal Medicine. 120:227-237.   DOI
14 Lu CC, Yang JS, Huang AC, Hsia TC, Chou ST, Kuo CL, Lu HF, Lee TH, Wood WG and Chung JG. (2010). Chrysophanol induces necrosis through the production of ROS and alteration of ATP levels in J5 human liver cancer cells. Molecular Nutrition and Food Research. 54:967-976.   DOI
15 Rho SN and Oh HS. (2002). Effect of omija(Schizandra chinensis baillon) extracts on the growth of liver cancer cell line SNU-398. Korean Journal of Nutrition and Health. 35:201-206.
16 Mulisa E, Asres K and Engidawork E. (2015). Evaluation of wound healing and anti-inflammatory activity of the rhizomes of Rumex abyssinicus J.(polygonaceae) in mice. BMC Complementary and Alternative Medicine. 15:341. https://doi.org/10.1186/s12906-015-0878-y (cited by 2019 March 3).   DOI
17 Nho JH, Jang JH, Jung HK, Lee MJ, Sim MO, Jeong DE and Cho HW. (2018). Ethanol extracts from Astilbe chinensis (Maxim.) Franch. Et Savat. exhibit inhibitory activities on oxidative stress generation and viability of human colorectal cancer cells. Korean Journal of Medicinal Crop Science. 26:141-147.   DOI
18 Ni CH, Yu CS, Lu HF, Yang JS, Huang HY, Chen PY, Wu SH, Ip SW, Chiang SY, Lin JG and Chung JG. (2014). Chrysophanol-induced cell death(necrosis) in human lung cancer A549 cells is mediated through increasing reactive oxygen species and decreasing the level of mitochondrial membrane potential. Environmental Toxicology. 29:740-749.   DOI
19 Park ES, Song GH, Kim SH, Lee SM, Kim YG, Lim YL, Kang SA and Park KY. (2018). Rumex crispus and Cordyceps militaris mixture ameliorates production of pro-inflammatory cytokines induced by lipopolysaccharide in C57BL/6 mice splenocytes. Preventive Nutrition and Food Science. 23:374-381.   DOI
20 Reuter S, Gupta SC, Chaturvedi MM and Aggarwal BB. (2010). Oxidative stress, inflammation, and cancer: How are they linked? Free Radical Biology and Medicine. 49:1603-1616.   DOI
21 Yildirim A, Mavi A and Kara AA. (2001). Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. Journal of Agricultural and Food Chemistry. 49:4083-4089.   DOI
22 Saunders IT, Kapur N, Mir H and Singh S. (2018). Emodin inhibits colon cancer by modulating apoptotic and cell survival signals. American Association for Cancer Research. 78(supplement1). http://cancerres.aacrjournals.org/content/78/13_Supplement/312.short (cited by 2019 March 23).
23 Sies H and Stahl W. (1998). Lycopene: Antioxidant and biological effects and its bioavailability in the human. Proceedings of the Society for Experimental Biology and Medicine. 218:121-124.   DOI
24 Ueno Y, Umemori K, Niimi EC, Tanuma SI, Nagata S, Sugamata M, Ihara T, Sekijima M, Kawai KI, Ueno I and Tashiro F. (1995). Induction of apoptosis by T-2 toxin and other natural toxins in HL-60 human promyelotic leukemia cells. Journal of Natural Toxins. 3:129-137.   DOI
25 Wang W, Chen R, Luo Z, Wang W and Chen J. (2018). Antimicrobial activity and molecular docking studies of a novel anthraquinone from a marine-derived fungus Aspergillus versicolor. Natural Product Research. 32:558-563.   DOI
26 Xie QC and Yang YP. (2014). Anti-proliferative of physcion 8-O-${\beta}$-glucopyranoside isolated from Rumex japonicus Houtt. on A549 cell lines via inducing apoptosis and cell cycle arrest. BMC complementary and alternative medicine. 14:377. https://doi.org/10.1186/1472-6882-14-377 (cited by 2019 March 8).   DOI
27 Bae GC and Bae DY. (2012). The anti-inflammatory effects of ethanol extract of Allium Hookeri cultivated in South Korea. Korean Journal of Herbology. 27:55-61.
28 Ahn SH, Han KH, Yoon YH, Hong SP, Paik YH, Chon CY, Moon YM, Song KJ, Kim DK and Suh I. (2001). Risk factors for hepatocellular carcinoma in Korea. Korean Journal of Medicine. 60:123-130.
29 Amano F and Noda T. (1995). Improved detection of nitric oxide radical(NO.) production in an activated macrophage culture with a radical scavenger, carboxy PTIO, and griess reagent. FEBS letters. 368:425-428.   DOI
30 Anagnostopoulou MA, Kelfalas P, Papageorgiou VP, Assimopoulou AN and Boskou D. (2006). Radical scavenging activity of various extracts and fractions of sweet orange peel(Citrus sinensis). Food Chemistry. 94:19-25.   DOI
31 Baek S, Choi JH, Ko SH, Lee YJ, Cha DS, Park EY, Kang YG and Jeon H. (2009). Antioxidant and anti-inflammatory effect of Nardostachys chinensis in $IFN-{\gamma}$/LPS-stimulated peritoneal macrophage. Korean Journal of Oriental Physiology and Pathology. 23:853-859.
32 Baig H, Ahmed D, Zara S, Aujla MI and Asghar MN. (2011). In vitro evaluation of antioxidant properties of different solvent extracts of Rumex acetosella leaves. Oriental Journal of Chemistry. 27:1509-1516.
33 Bhandari M and Clack B. (2015). Extraction of anti-cancer water soluble compounds from Rumex crispus. The FASEB Journal. 29(supplement1):897.30. https://www.fasebj.org/doi/abs/10.1096/fasebj.29.1_supplement.897.30 (cited by 2018 July 20).
34 Blois MS. (1958). Antioxidant determinations by the use of a stable free radical. Nature. 181:1199-1200.   DOI
35 Danielsen K, Aksnes DW and Francis GW. (1992). NMR study of some anthraquinones from rhubarb. Magnetic Resonance in Chemistry. 30:359-360.   DOI
36 Choi GJ, Lee SW, Jang KS, Kim JS, Cho KY and Kim JC. (2004). Effects of chrysophanol, parietin, and nepodin of Rumex crispus on barley and cucumber powdery mildews. Crop Protection. 23:1215-1221.   DOI