Browse > Article

Myristicae Semen Extract Protects Excitotoxicity in Cultured Neuronal Cells  

Kim, Ji-Ye (College of Veterinary Medicine & Research Institute of Veterinary Medicine, Chungbuk Natl. Univ.)
Ban, Ju-Yeon (College of Veterinary Medicine & Research Institute of Veterinary Medicine, Chungbuk Natl. Univ.)
Bang, Kyong-Hwan (National Institute of Crop Sci., RDA)
Seong, Nak-Sul (National Institute of Crop Sci., RDA)
Song, Kyung-Sik (College of Agriculture & Life-Sci., Kyungpook Natl. Univ.)
Bae, Ki-Whan (College of Pharmacy, Chungnam Natl. Univ.)
Seong, Yeon-Hee (College of Veterinary Medicine & Research Institute of Veterinary Medicine, Chungbuk Natl. Univ.)
Publication Information
Korean Journal of Medicinal Crop Science / v.12, no.5, 2004 , pp. 415-423 More about this Journal
Abstract
Myristica fragrans seed from Myristica fragrans Houtt (Myristicaceae) has various pharmacological activities peripherally and centrally. The present study aims to investigate the effect of the methanol extract of Myristica fragrans seed (MF) on kainic acid (KA)-induced neurotoxicity in primary cultured rat cerebellar granule neuron. MF, over a concentration range of 0.05 to $5\;{\mu}g/ml$ inhibited KA $(500\;{\mu}M)-induced$ neuronal cell death, which was measured by trypan blue exclusion test and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay. MF $(0.5\;{mu}g/ml)$ inhibited glutamate release into medium induced by KA $(500\;{\mu}M)$, which was measured by HPLC. Pretreatment of MF $(0.5\;{mu}g/ml)$ inhibited KA $(500\;{\mu}M)-induced$ elevation of cytosolic calcium concentration $([Ca^{2+}]_c)$, which was measured by a fluorescent dye, Fura 2-AM, and generation of reactive oxygen species (ROS). These results suggest that MF prevents KA-induced neuronal cell damage in vitro.
Keywords
Myristica fragrans seed; kainic acid; neurotoxicity; cerebellar granule cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ben-Ali Y (1985) Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy, Neuroscience 14:375-403   DOI   PUBMED   ScienceOn
2 Brorson JR, Manzolillo PA, Miller RJ (1994) $Ca^{2+} entry via AMPAlKA receptor and excitotoxicity in cultured cerebellar Purkinje cells.J. Neurosci. 14:187-197
3 Choi DW (1992) Excitotoxic cell death. J. Neurobiol. 23:12611276   DOI   PUBMED
4 Duffy S, MacViar BA (1996) In vitro ischemia promotes calcium influx and intracellular calcium release in hippocampal astrocytes. J. Neurosci. 16:71-81
5 Dugan LL, Sensi SL, Canzoniero LM, Handran SD, Rothman SM, Lin TS, Goldberg MP, Choi DW (1995) Mithchondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl D-aspartate. J. Neurosci. 15:6377-6388   DOI
6 Giusti P, Franceschini D, Petrone D, Manev H, Floreani M (1996) In vitro and in vivo protection against kainate-induced excitotoxicity by melatonin. J. Pineal Res. 20:226-231   DOI   ScienceOn
7 Hellier JL, Patrylo PR, Buckmaster PS, Dudek FE (1998) Recurrent spontaneous motor seizures after repeated lowdose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy. Epilepsy Res. 31:73-84   DOI   ScienceOn
8 Huang KC (1999) The Pharmacology of Chinese herbs. CRC press LLC, Florida, USA. p. 243
9 Mei JM, Chi WM, Trump BF, Eccles CU (1996) Involvement of nitric oxide in the deregulation of cytosolic calcium in cerebellar neurons during combined glucose-oxygen deprivation. Mol. Chern. Neuropathol. 27:155-166   DOI   ScienceOn
10 Ram A, Lauria P, Gupta R, Sharma VN (1996) Hypolipidaemic effect of Myristica fragrans fruit extract in rabbits. J. Ethnopharmacol. 55:49-53   DOI   ScienceOn
11 Regan RF, Choi DW (1991) Glutamate neurotoxicity in spinal cord cell culture. Neuroscience 43:585-591   DOI   PUBMED   ScienceOn
12 Rothman SM, Olney JW (1986) Glutamate and the phathophysiology of hypoxic-ischemic brain damage. Ann. Neurol. 19:105-111   DOI   ScienceOn
13 Simonian NA, Getz RL, Leveque JC, Konrake C, Coyle]T (1996) Kainic acid induces apoptosis in neurons. Neurosci. 75:1047-1055   DOI   ScienceOn
14 Weiss JH, Hartley DM, Koh J, Choi DW (1990) The calcium channel blocker nifedipine attenuates slow excitatory amino acid neurotoxicity. Science 247:1474-1477   DOI   PUBMED
15 Dutrait N, Culcasi M, Cazevieille C, Pietri S, Tordo P, Bonne C, Muller A (1995) Calcium-dependent free radical generation in cultured retinal neurons injured by kainate. Neurosci. Lett. 198:13-16   DOI   ScienceOn
16 Berridge MV, Tan AS (1993) Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch. Biochem. Biophys. 303:474-482   DOI   ScienceOn
17 Nadkami KM (1976) Indian Materia Medica vol. 1. Popular Prakashan. Bombay p. 830-834
18 Brenner N, Frank OS, Knight E (1993) Chronic nutmeg psychosis.J. R. Soc. Med. 86:179-180
19 Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. physiol. Rev. 80:315-360   DOI
20 Liang LP, Patel M (2004) Mitochondrial oxidative stress and increased seizure susceptibility in $SOd^{2-}/^+ mice. Free Radic. Biol. Med. 36:542-554   DOI   ScienceOn
21 Sonavane GS, Sarveiya VP, Kasture VS, Kasture SB (2002) Anxiogenic activity of Myristica fragrans seeds. Pharmacol. Biochem. Behav. 71:247-252
22 Evans WC (1996) Treese and Evans'Pharmcognosy. 14th ed. Singapore: Harcourt Brace & Co. Asia, p. 273-275
23 Baltrons MA, Saadoun S, Agullo L, Garcia A (1997) Regulation by calcium of the nitric oxide/cyclic GMP system in cerebellar granule cells and astroglia in culture. J. Neurosci. Res. 49:333-341   DOI   ScienceOn
24 Choi DW (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci. Letts. 58:293-297   DOI   PUBMED   ScienceOn
25 Sierra-Paredes G, GaIn-Valiente J, Vazquez-Illanes MD, AguilarVeiga E, Sierra-Marcuo G (2000) Effect of ionotropic glutamate receptors antagonists on the modifications in extracellular glutamate and aspartate levels during picrotoxin seizures: a microdialysis study in freely moving rats. Neurochem. Int. 37:377-386   DOI   ScienceOn
26 Arias C, Montiel T, Rapia R (1990) Transmitter release in hippocampal slices from rats with limbic seizures produced by systemic administration of kainic acid. Neurochem. Res. 15:641-646   DOI   PUBMED
27 Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate and neurodegenerative disorders. Science 262:689-694   DOI   PUBMED
28 Lesort M, Esclaire F, Yardin C, Hugon J (1997) NMDA induces apoptosis and necrosis in neuronal cultures. Increased APP immunoreactivity is linked to apoptotic cells. Neurosci. Letts. 221 :213-216   DOI   ScienceOn
29 Van Gils C, Cox PA (1994) Ethnobotany of nutmeg in the spice islands. J. Ethnopharmacol. 42:117-124   DOI   ScienceOn
30 Gunasekar PG, Sun PW, Kanthasamy AG, Borowitz JL, Isom GE (1996) Cyanide-induced neurotoxicity involves nitric oxide and reactive oxygen species generation after N-Methyl-Daspartate receptor activation. J. Pharmacol. Exp. Ther. 277:150-155
31 Ellison DW, Beal MF, Martin JB (1987) Amino acid neurotransmitters in postmortem human brain analyzed by high performance liquid chromatography with electrochemical detection. J. Neurosci. 19:305-315
32 Bardoul M, Drian MJ, Knig N (1998) Modulation of intracellular calcium in early neural cells by non-NMDA ionotropec glutamate receptors. Perspect. Dev. Neurobiol. 5:353-371
33 Sperk G (1994) Kainic acid seizures in the rat. Prog. Neurobiol 42:1-32   DOI   ScienceOn
34 Jensen JB, Schousboe A, Pickering DS (1998) AMPA receptor mediated excitotoxicity in neocortical neurons is developmentally regulated and dependent upon receptor desensitization. Neurochem. Int. 32:505-513   DOI   ScienceOn
35 Bondy SC, Lee DK (1993) Oxidative stress induced by glutamate receptor agonists. Brain Res. 610:229-233   DOI   ScienceOn
36 Milatovic D, Gupta RC, Dettbam WD (2002) Involvement of nitric oxide in kainic acid-induced excitotoxicity in rat brain. Brain Res. 957:330-337   DOI   ScienceOn
37 Carroll FY, Cheung NS, Beart PM (1998) Investigations of nonNMDA receptor-induced toxicity in serum-free antioxidantrich primary cultures of murine cerebellar granule cells. Neurochem. Int. 33:23-28   DOI   ScienceOn
38 Whit RJ, Reynolds IJ (1996) Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxic exposure. J. Neurosci. 16:5688-5697
39 Dykens JA (1994) Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated $Ca^{2+} and $Na^+: implications for neurodegeneration. J. Neurochem. 63:584-591   DOI   ScienceOn
40 Larm JA, Cheung NS, Beart PM (1996) (S)-5-fluorowillardiinmediated neurotoxicity in cultured murine cortical neurons occurs via AMPA and kainate receptors. Eur. J. Pharm. 314:249-254   DOI   ScienceOn
41 Koh SB, Ban JY, Lee BY, Seong YH (2003) Protective effects of fangchinoline and tetrandrine on hydrogen peroxide-induced oxidative neuronal cell damage in cultured rat cerebellar granule cells. Planta Medica 69:506-512   DOI   ScienceOn
42 Van Vliet BJ, Sebben M, Dumuis A, Gabrion J, Bockaert J, Pin JP (1989) Endogenous amino acid release from cultured cerebellar neuronal cells: Effect of tetanus toxin on glutamate release. J. Neurochem. 52:1229-1230   DOI   PUBMED
43 Pereira CF, Oliveira CR (2000) Oxidative glutamate toxicity involves mitochondrial dysfunction and perturbation of intracellular $Ca^{2+} homeostasis. Neurosci. Res. 37:227-236   DOI   ScienceOn
44 Larm JA, Beart PM, Cheung NS (1997) Neurotoxin domoic acid produces cytotoxicity via kainate- and AMPA-sensitive receptors in cultured cortical neurons. Neurochem. Int. 31:677-682   DOI   ScienceOn
45 Merck Index (1989) 11th Edition; 999-1000
46 Weiss JH, Sensi SL (2000) $Ca^{2+}-Zn^{2+} permeable AMPA or kainite receptors: possible key factors in selective neurodegeneration, Trends Neurosci. 23:365-371   DOI   ScienceOn
47 Tecoma ES, Monyer H, Goldberg MP, Choi DW (1989) Traumatic neuronal injury in vitro is attenuated by NMDA antagonists. Neuron 2:1541-1545   DOI   ScienceOn
48 Blanchard BJ, Konopka G, Russel M, Ingram VM (1997) Mechanism and prevention of neurotoxicity caused by $\beta-amyloid peptides: relation to Alzheimer's disease. Brain Res. 776:40-50   DOI   PUBMED   ScienceOn
49 Choi DW (1988) Glutamate neurotoxicity and disease of nervous system. Neuron 1:623-634   DOI   PUBMED   ScienceOn