Browse > Article
http://dx.doi.org/10.7235/hort.2015.15017

The Selection of Domestically Bred Cultivars for Spray-type Chrysanthemum Transformation  

Suh, Eun-Jung (Molecular breeding Division, National Academy of Agricultural Science, Rural Development Administration)
Han, Bong Hee (Department of Seed Service, The Foundation of Agri. Tech. Commercialization and Transfer)
Lee, Yeon-Hee (Molecular breeding Division, National Academy of Agricultural Science, Rural Development Administration)
Lee, Seong-Kon (Molecular breeding Division, National Academy of Agricultural Science, Rural Development Administration)
Hong, Joon Ki (Molecular breeding Division, National Academy of Agricultural Science, Rural Development Administration)
Kim, Kyung Hwan (Molecular breeding Division, National Academy of Agricultural Science, Rural Development Administration)
Publication Information
Horticultural Science & Technology / v.33, no.6, 2015 , pp. 947-954 More about this Journal
Abstract
To select suitable spray chrysanthemum cultivars for Agrobacterium-mediated transformation, thirty-nine (39) spray cultivars bred in the National Institutes of Korea and a standard cultivar Jinba from Japan were collected and tested for regeneration rate and Agrobacterium infection assays. MS medium with $0.5mg{\cdot}L^{-1}$ IAA and $1.0mg{\cdot}L^{-1}$ BAP was used for shoot regeneration from leaf disks and internodes. The shoot regeneration rate in leaf disks was the highest in cultivar BRM, followed by cultivars VS, WW and YTM. The cultivar JB (Jinba) used as a transformation material in previous reports ranked similarly to cultivars PK and SPP. In shoot regeneration from internodes, the shoot regeneration rate was the highest for cultivar PA, followed by cultivar WW. The infection rate of leaves and internodes of 40 chrysanthemum cultivars with agrobacterium was investigated. Cultivars WPP, YNW, VS, PP, WW, FA, PA and YMN showed the highest infection levels in leaves, whereas cultivars WPP, PA, PK and YNW had the highest infection levels in internodes. Considering all of these results, cultivars VS and WW were the most appropriate for gene transformation of chrysanthemum using leaves, while cultivar PA was for internodes.
Keywords
spray-type chrysanthemum; regeneration; agrobacterium; transformation; GUS (beta-glucuronidase);
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Aida, R., Y. Tabei, M. Hirai, and M. Shibata. 1992. Agrobacteriummediated transformation of chrysan-themum. Breed. Sci. 42:270-271.
2 An, J., A. Song, Z. Guan, J. Jiang, F. Chen, W. Lou, W. Fang, Z. Liu, and S. Chen. 2014. The over-expression of Chrysanthemum crassum CcSOS1 improves the salinity tolerance of chrysanthemum. Mol. Biol. Rep. 41:4155-4162.   DOI
3 Chen, L. 2005. Research and analysis of the international market of chrysanthemum. Greenhouse Hortic. 8:20-22.
4 De Jong, J., W. Rademaker, and K. Ohishi. 1995. Agrobacteriummediated transformation of chrysan-themum. Plant Tissue Cult. Biotechnol. 1:38-42.
5 Duncan, D.B. 1955. Multiple range and multiple F test. Biometrics 11:1-42.   DOI
6 Fukai, S., J. De Jong, and W. Rademaker. 1995. Efficient genetic transformation of chrysanthemum (Dendranthema grandiforum (Ramat.) Kitamura) using stem segment. Breed. Sci. 45:179-184.
7 Han, B.H., E.J. Suh, S.Y. Lee, H.K. Shin, and Y.P. Lim. 2007. Selection of non-branching lines induced by introducing Ls-like cDNA into chrysanthemum (Dendranthema x grandiflorum (Ramat.) Kitamura) 'Shuho-no-chikara'. Sci. Hortic. 115:70-75.   DOI
8 Han, B.H., S.Y. Lee, and B.M. Park. 2009. Comparison of chrysanthemum cultivars based on direct shoot regeneration rates in tissue culture. J. Plant Biotechnol. 36:275-280.   DOI
9 Hwang, J.C., Y.D. Chin, Y.M. Chung, S.K. Kim, C.W. Ro, and B.R. Jeong. 2013. A new spray chrysanthemum cultivar, 'Blue Hope' with anemone type and white petals for cut flower. Korean J. Hortic. Sci. Technol. 31:123-127.   DOI
10 Jefferson, R.A. 1987. Plant reporter genes: The gus gene fusion system. Genetic Engineering 10:247-263.
11 Kim, Y.H., H.M. Park, J.Y. Jung, T.M. Kwon, S.J. Jeung, Y.B. Yi, G.T. Kim, and J.S. Nam. 2010. Development of Agrobacteriummediated transformation method for domestically bred chrysanthemum cultivar 'Moulinrouge' and genetic change of leaf morphology using AtSICKLE gene. Korean J. Hortic. Sci. Technol. 28:449-455.
12 Kosugi, S., Y. Ohashi, K. Nakajima, and A. Yuji. 1990. An improved assay for $\beta$-glucuronidase in trans-formed cells: Methanol almost completely suppresses a putative endogenous $\beta$-glucuronidase. Plant Sci. 70:133-140.   DOI
13 Ledger, S.E., S.C. Deroles, and N.K. Given. 1991. Regeneration and Agrobacterium-mediated transformation of chrysanthemum. Plant Cell Rep. 10:195-199.
14 Lee, S.Y., B.H. Han, E.J. Hur, H.K. Shin, S.T. Kim, E.K. Lee, W.H. Kim, O.H. Kwon, and I.H. Lee. 2012. FT-transgenic spray-type chrysanthemum (Dendranthema grandiflorum Kitamura) showing early flowering. J. Plant Biotechnol. 39:140-145.   DOI
15 Lee, S.Y., J.H. Kim, K.S. Cheon, E.K. Lee, W.H. Kim, O.H. Kwon, and H.J. Lee. 2013. Phenotypic and molecular characteristics of second clone ($T_0V_2$) plants of the LeLs-antisense genetransgenic chrysanthemum line exhibiting non-branching. J. Plant Biotechnol. 40:192-197.   DOI
16 Li, Y.F., W.M. Fang, F.D. Chen, S.M. Chen, and C.L. Shi. 2009. Effect of different planting date on phenophase and quality of spray cut chrysanthemum produced in summer, J. Yangzhou University, Agricultural and Life Sciences ed. 30:80-83.
17 Shinoyama, H., R. Aida, R. Ichikawa, H. Ichikawa, Y. Nomura, and Y. Mochizuki. 2012. Genetic engineering of chrysanthemum (Chrysanthemum morifolium): Current progress and perspectives. Plant Biotechnol. 29:323-337.   DOI
18 Miller, M. 1975. Leaf, stem, crown, and root galls induced in chrysanthemum by Agrobacterium tumefaciens. Phytopathology 65:805-811.   DOI
19 Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473-497.   DOI
20 Shinoyama, H. and A. Mochizuki. 2006. Insect resistant transgenicchrysanthemum [Dendranthema $\times$ grandiflorum (Ramat.) Kitamura]. Acta Hortic. 714:177-184.
21 Song, A., J. An, Z. Guan, J. Jiang, F. Chen, W. Lou W. Fang, Z. Liu, and C. Sumei. 2014. The constitutive expression of a two transgene construct enhances the abiotic stress tolerance of chrysanthemum. Plant Physiol. Biochem. 80:114-120.   DOI
22 Takatsu, Y., H. Tomotsune, M. Kasumi, and F. Sakuma. 1998. Differences in adventitious shoot regeneration capacity among Japanese chrysanthemum (Dendranthema grandiflora (Ramat.) Kitamura) cultivars and the improved protocol for Agrobacteriummediated genetic transformation. J. Jpn. Soc. Hortic. Sci. 67:958-964.   DOI
23 Teixeira da Silva, J.A. 2005. Effective and comprehensive chrysanthemum (Dendranthema $\times$ grandiflora) regeneration and transformation protocols. Biotechnology 4:94-107.   DOI
24 Teixeira da Silva, J. A., H. Shinoyama, R. Aida, Y. Matsushita, S.K. Raj, and F. Chen. 2013. Chrysanthemum biotechnology: Quo vadis? Crit. Rev. Plant. Sci. 32:21-52.   DOI
25 Urban, L.A., J.M. Sherman, J.W. Moyer, and M.E. Daub. 1994. High frequency shoot regeneration and Agrobacterium-mediated transformation of chrysanthemum (Dendranthema grandiflora). Plant Sci. 98:69-79.   DOI
26 Teixeira da Silva, J.A. and S. Fukai. 2004. Effect of aminoglycoside antibiotics on in vitro morphogenesis from cultured cells of chrysanthemum and tobacco. J. Plant Biotechnol. 6:25-37.