Browse > Article
http://dx.doi.org/10.7235/hort.2015.14123

Antioxidant Capacity and Protective Effects on Neuronal PC-12 Cells of Domestic Bred Kiwifruit  

Lee, Inil (Graduate School of Biotechnology, Kyung Hee University)
Lee, Bong Han (Graduate School of Biotechnology, Kyung Hee University)
Eom, Seok Hyun (Skin Biotechnology Center, Kyung Hee University)
Oh, Chang-Sik (Department of Horticultural Biotechnology, Kyung Hee University)
Kang, Hee (Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University)
Cho, Youn-Sup (Fruit Research Institute, Jeollanam-do Agricultural Research and Extension Services)
Kim, Dae-Ok (Graduate School of Biotechnology, Kyung Hee University)
Publication Information
Horticultural Science & Technology / v.33, no.2, 2015 , pp. 259-267 More about this Journal
Abstract
This study was conducted to comparatively evaluate antioxidant capacity (AC) of seven cultivars of kiwifruit (Actinidia spp.) and their protective effects on neuronal PC-12 cells. The contents of total phenolics (TP) and total flavonoids (TF) of kiwifruits were also examined. Five cultivars of kiwifruit, Actinidia chinensis (cv. Haehyang and cv. Haegeum), A. eriantha (cv. Bidan), A. arguta ${\times}$ A. deliciosa (cv. Mansoo), and A. arguta (cv. Chiak), were bred in Korea, while two cultivars, A. deliciosa (cv. Hayward) and A. linguiensis (accession number 041AE), originated from New Zealand and China, respectively. Skin extracts of kiwifruit showed higher TP, TF, and AC than flesh extracts. The highest levels of TP and AC were found in cv. Bidan flesh extract among cultivars studied, but the TF content of cv. Bidan flesh extract was the lowest. The kiwifruit bred in Korea had higher AC than their counterparts. AC of kiwifruit had a highly positive linear correlation with TP and TF. The flesh extracts from cv. Hayward, cv. Haehyang, and cv. Haegeum significantly (p < 0.05) prevented PC-12 cells from oxidative stress induced using $H_2O_2$ compared to a control with $H_2O_2$ only. Overall, our results suggest that kiwifruit bred in Korea may offer a good source of antioxidants and serve as functional materials.
Keywords
Actinidia arguta; A. chinensis; A. deliciosa; A. eriantha; A. linguiensis; oxidative stress;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ames, B.N., M.K. Shigenaga and T.M. Hagen. 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. U.S.A. 90:7915-7922.   DOI
2 Apel, K. and H. Hirt. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373-399.   DOI
3 Arts, I.C. and P.C. Hollman. 2005. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 81:317S-325S.
4 Brand-Williams, W., M.E. Cuvelier and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28:25-30.   DOI
5 Deutsch, J.C. 1998. Ascorbic acid oxidation by hydrogen peroxide. Anal. Biochem. 255:1-7.   DOI
6 Drewnowski, A. and C. Gomez-Carneros. 2000. Bitter taste, phytonutrients, and the consumer: A review. Am. J. Clin. Nutr. 72:1424-1435.
7 Du, G., M. Li, F. Ma and D. Liang. 2009. Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chem. 113:557-562.   DOI
8 Fiorentino, A., B. D'brosca, S. Pacifico, C. Mastellone, M. Scognamiglio and P. Monaco. 2009. Identification and assessment of antioxidant capacity of phytochemicals from kiwi fruits. J. Agric. Food Chem. 57:4148-4155.   DOI
9 Girard-Lalancette, K., A. Pichette and J. Legault. 2009. Sensitive cell-based assay using DCFH oxidation for the determination of pro- and antioxidant properties of compounds and mixtures: Analysis of fruit and vegetable juices. Food Chem. 115:720-726.   DOI
10 Guan, S., Y.-M. Bao, B. Jiang and L.-J. An. 2006. Protective effect of protocatechuic acid from Alpinia oxyphylla on hydrogen peroxide-induced oxidative PC12 cell death. Eur. J. Pharmacol. 538:73-79.   DOI
11 Harker, F., B. Carr, M. Lenjo, E. MacRae, W. Wismer, K. Marsh, M. Williams, A. White, C. Lund and S. Walker. 2009. Consumer liking for kiwifruit flavour: A meta-analysis of five studies on fruit quality. Food Qual. Prefer. 20:30-41.   DOI
12 Jung, K.-A., T.-C. Song, D. Han, I.-H. Kim, Y.-E. Kim and C.-H. Lee. 2005. Cardiovascular protective properties of kiwifruit extracts in vitro. Biol. Pharm. Bull. 28:1782-1785.   DOI
13 Heo, H.-J., H.-Y. Cho, B. Hong, H.-K. Kim, E.-K. Kim, B.-G. Kim and D.-H. Shin. 2001. Protective effect of 4',5-dihydroxy-3',6,7-trimethoxyflavone from Artemisia asiatica against A${\beta}$-induced oxidative stress in PC12 cells. Amyloid-J. Protein Fold. Disord. 8:194-201.   DOI
14 Huang, D., B. Ou, M. Hampsch-Woodill, J.A. Flanagan and R.L. Prior. 2002. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 50:4437-4444.   DOI
15 Jia, Z., M. Tang and J. Wu. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64:555-559.   DOI
16 Kahkonen, M.P., A.I. Hopia, H.J. Vuorela, J.-P. Rauha, K. Pihlaja, T.S. Kujala and M. Heinonen. 1999. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 47:3954-3962.   DOI
17 Keston, A.S. and R. Brandt. 1965. The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal. Biochem. 11:1-5.   DOI
18 Kim, D.-O. and C.Y. Lee. Extraction and isolation of polyphenolics. pp I1.2.1-I1.2.12. In: VCurrent protocols in food analytical chemistry. Wrolstad RE (ed.). John Wiley & Sons, Inc., New York, USA (2002)
19 Kim, D.-O. and C.Y. Lee. 2004. Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit. Rev. Food Sci. Nutr. 44:253-273.   DOI
20 Kim, J.G., K. Beppu and I. Kataoka. 2009. Varietal differences in phenolic content and astringency in skin and flesh of hardy kiwifruit resources in Japan. Sci. Hortic. 120:551-554.   DOI
21 Kim, J.H., H. Yang, H.J. Hong, W.Y. Kang, D.G. Kim, S.C. Kim, K.J. Song, D. King, C.H. Han and Y.J. Lee. 2010. Neuroprotective effects of Korean kiwifruit against t-BHPinduced cell damage in PC12 cells. Korean J. Plant Res. 23:165-171.
22 Latocha, P., T. Krupa, R. Wolosiak, E. Worobiej and J. Wilczak. 2010. Antioxidant activity and chemical difference in fruit of different Actinidia sp. Int. J. Food Sci. Nutr. 61:381-394.   DOI
23 Lim, Y.J., C.-S. Oh, Y.-D. Park, D.-O. Kim, U.-J. Kim, Y.-S. Cho and S.H. Eom. 2014. Physiological components of kiwifruits with in vitro antioxidant and acetylcholinesterase inhibitory activities. Food Sci. Biotechnol. 23:943-949.   DOI
24 Liu, S., J.E. Manson, I.-M. Lee, S.R. Cole, C.H. Hennekens, W.C. Willett and J.E. Buring. 2000. Fruit and vegetable intake and risk of cardiovascular disease: the Women's Health Study. Am. J. Clin. Nutr. 72:922-928.
25 Motohashi, N., Y. Shirataki, M. Kawase, S. Tani, H. Sakagami, K. Satoh, T. Kurihara, H. Nakashima, I. Mucsi, A. Varga and J. Molnar. 2002. Cancer prevention and therapy with kiwifruit in Chinese folklore medicine: A study of kiwifruit extracts. J. Ethnopharmacol. 81:357-364.   DOI
26 Moyer, R.A., K.E. Hummer, C.E. Finn, B. Frei and R.E. Wrolstad. 2002. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J. Agric. Food Chem. 50:519-525.   DOI
27 Nishiyama, I., T. Fukuda and T. Oota. 2005. Genotypic differences in chlorophyll, lutein, and ${\beta}$-carotene contents in the fruits of Actinidia species. J. Agric. Food Chem. 53:6403-6407.   DOI
28 Proteggente, A.R., A.S. Pannala, G. Paganga, L. Van. Buren, E. Wagner, S. Wiseman, F. Van De. Put, C. Dacombe and C.A. Rice-Evans. 2002. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radic. Res. 36:217-233.   DOI
29 Nishiyama, I., Y. Yamashita, M. Yamanaka, A. Shimohashi, T. Fukuda and T. Oota. 2004. Varietal difference in vitamin C content in the fruit of kiwifruit and other Actinidia species. J. Agric. Food Chem. 52:5472-5475.   DOI
30 Pavlica, S. and R. Gebhardt. 2010. Protective effects of flavonoids and two metabolites against oxidative stress in neuronal PC12 cells. Life Sci. 86:79-86.   DOI   ScienceOn
31 Rural Development Administration. 2013. New fruit cultivars developed by governmental institutes of Korea. www.nihhs.go.kr. accesed on July 18, 2014.
32 Samadi-Maybodi, A. and M.R. Shariat. 2003. Characterization of elemental composition in kiwifruit grown in northern Iran. J. Agric. Food Chem. 51:3108-3110.   DOI
33 Scalzo, J., A. Politi, N. Pellegrini, B. Mezzetti and M. Battino. 2005. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 21:207-213.   DOI
34 Sestili, P., G. Brandi, L. Brambilla, F. Cattabeni and O. Cantoni. 1996. Hydrogen peroxide mediates the killing of U937 tumor cells elicited by pharmacologically attainable concentrations of ascorbic acid: Cell death prevention by extracellular catalase or catalase from cocultured erythrocytes or fibroblasts. J. Pharmacol. Exp. Ther. 277:1719-1725.
35 Singleton, V.L. and J.A. Rossi, Jr. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16:144-158.
36 Zheng, W. and S.Y. Wang. 2001. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 49:5165-5170.   DOI
37 Tavarini, S., E. Degl'nnocenti, D. Remorini, R. Massai and L. Guidi. 2008. Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chem. 107:282-288.   DOI   ScienceOn
38 Wolfe, K.L. and R.H. Liu. 2007. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J. Agric. Food Chem. 55:8896-8907.   DOI