Browse > Article
http://dx.doi.org/10.7235/hort.2014.14020

Response of Early-season Asian Pear 'Hanareum' Treated with GA4+7 to Postharvest Application of 1-methylcyclopropene (1-MCP)  

Lee, Ug-Yong (Pear Research Station, National Institute of Horticultural & Herbal Science)
Oh, Kwang-Suk (Department of Horticulture, Chungnam National University)
Lim, Byung-Sun (Postharvest Research Team, National Institute of Horticultural & Herbal Science)
Wang, Mao-Hua (Department of Horticulture, Chungnam National University)
Hwang, Yong-Soo (Department of Horticulture, Chungnam National University)
Chun, Jong-Pil (Department of Horticulture, Chungnam National University)
Publication Information
Horticultural Science & Technology / v.32, no.5, 2014 , pp. 645-654 More about this Journal
Abstract
This study was conducted to investigate the effect of 1-methylcyclopropene (1-MCP, $1.0{\mu}L{\cdot}L^{-1}$), a known ethylene action inhibitor, on fruit quality and incidence of physiological disorders during a simulated marketing period at $25^{\circ}C$ for 20 days in early-season Asian pear (Pyrus pyrifolia Nakai) 'Hanareum' that had been treated with 0, 0.5, 1.2 or 2.4% $GA_{4+7}$. Weight loss of stored fruits increased with $GA_{4+7}$ concentration, and the 1-MCP treatment slightly reduced the weight loss rates during the marketing period. Flesh firmness decreased abruptly in all 1-MCP-untreated fruits as the storage period extended to 10 d, whereas the firmness of 1-MCP-treated fruits remained high (> 30 N) during 15 days shelf-life. The effect of 1-MCP was significantly reduced when fruits were subjected to increased GA concentration. Higher soluble solids content and acidity during extended shelf-life were also apparent in 1-MCP-treated 'Hanareum' pears. The L-values (lightness) and hue angles of 1-MCP treated samples were higher than those of controls during 20 days shelf-life, but the a-value (redness) was lower in 1-MCP treated fruits. 1-MCP treatment did not decrease the level of ethylene evolution regardless of $GA_{4+7}$ concentration during shelf-life in early-season Asian pear 'Hanareum'. By contrast, 1-MCP treatment decreased the respiration rate significantly during shelf-life. The efficacy of 1-MCP was greatest in the GA-untreated fruit and was reduced as the $GA_{4+7}$ concentration increased. 1-MCP treatment influenced the severity of physiological disorders including core browning and mealiness: 1-MCP treatment completely blocked the incidence of core browning of during 15 days shelf-life, and reduced the severity of mealiness during 20 days shelf-life regardless of $GA_{4+7}$ concentration. Based on our results, we conclude that the use of $1{\mu}L{\cdot}L^{-1}$ 1-MCP can be of great benefit for maintaining quality and preventing physiological disorders in early-season pear cultivar 'Hanareum' pear, whereas its efficacy decreases with the concentration of $GA_{4+7}$ whereas its efficacy gradually decreases when the concentration of $GA_{4+7}$ paste increased.
Keywords
ethylene; firmness; physiological disorder; respiration;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Mullins, E.D., T.G. McCollum, and R.E. McDonald. 2000. Consequences on ethylene metabolism of inactivating the ethylene receptor sites in diseased non-climacteric fruit. Postharvest Biol. Technol. 19:155-164.   DOI
2 Li, Z.Q. and L.J. Wang. 2009. Effect of 1-methylcyclopropene on ripening and superficial scald of Japanese pear (Pyrus pyrifolia Nakai, cv. Akemizu) fruit at two temperatures. Food Sci. Technol. Res. 15:483-490.   DOI
3 Lurie, S. and C.B. Watkins. 2012. Superficial scald, its etiology and control. Postharvest Biol. Technol. 65:44-60.   DOI
4 Moon, S.J., S.H. Lee, J.H. Han, Y.S. Hwang, and J.P. Chun. 2008. Effects of 1-MCP and storage condition on fruit quality of 'Whangkeumbae' pear during storage and simulated marketing. Kor. J. Hort. Sci. Technol. 26:380-386.
5 Nakagawa, S., I. Kiyokawa, H. Matsui, and H. Kurooka. 1973. Fruit development of peach and Japanese pear as affected by destruction of the embryo and application of gibberellins. J. Japan. Soc. Hortic. Sci. 37:104-112.
6 Oanh, V.T.K., U.Y. Lee, J.H. Choi, H.C. Lee, and J.P. Chun. 2012. Changes of fruit characteristics and cell wall component during maturation and ripening in Asian pear 'Hanareum', 'Manpungbae' and 'Niitaka' (Pyrus pyrifolia Nakai). Kor. J. Hort. Sci. Technol. 30:345-356.   과학기술학회마을   DOI   ScienceOn
7 Oh, K.Y., U.Y. Lee, S.J. Moon, Y.O. Kim, H.S. Yook. Y.S. Hwang, and J.P. Chun. 2010. Transportation and distribution temperatures affect fruit quality and physiological disorders in 'Wonhwang' pears. Kor. J. Hort. Sci. Technol. 28:434-441.
8 Park, Y.S. 1999. Effects of storage temperatures and CA conditions on firmness, fruit composition, oxygen consumption and ethylene production of Asian pears during storage. J. Kor. Soc. Hort. Sci. 40:559-562.
9 Selvarajah, S., A.D. Bauchot, and P. John. 2001. Internal browning in cold-stored pineapples is supressed by a postharvest application of 1-methylcyclopropene. Postharvest Biol. Technol. 23:167-170.   DOI   ScienceOn
10 Watkins, C.B., K.J. Silsby, and M.C. Goffinet. 1997. Controlled atmosphere and antioxidant effects on external $CO_{2}$ injury of 'Empire' apples. HortScience 32:1242-1246.
11 Tamura, F., J.P. Chun, K. Tanabe, M. Morimoto, and A. Itai. 2003. Effect of summer-pruning and gibberellin on the watercore development in Japanese pear 'Akibae' fruit. J. Japan. Soc. Hortic. Sci. 72:372-377.   DOI   ScienceOn
12 Tian, M.S., S. Prakash, H.J. Elgar, H. Young, D.M. Burmeister, and G.S. Ross. 2000. Responses of strawberry fruit to 1- methylcyclopropene (1-MCP) and ethylene. J. Plant Growth Regul. 32:83-90.   DOI   ScienceOn
13 Watkins, C.B., J.F. Nock, and B.D. Whitaker. 2000. Responses of early, mid and late season apple cultivars to postharvest application of 1-methylcyclopropene (1-MCP) under air and controlled atmosphere storage conditions. Postharvest Biol. Technol. 19:17-32.   DOI   ScienceOn
14 Whitaker, B.D., M. Villalobos, E.J. Mitcham, and J.P. Mattheis. 2009. Superficial scald susceptibility and ${\alpha}$-farnesene metabolism in 'Bartlett' pears grown in California and Washington. Postharvest Biol. Technol. 53:43-50.   DOI
15 Yamada, H., K. Nakajima, Y. Yamazawa, and I. Kuroi. 1991. Effect of pollination and gibberellin treatment on fruit set and development of the European pear (Pyrus communis L. var. sativa DC.) cv. Le Lectier. J. Japan. Soc. Hort. Sci 60: 267-273.   DOI
16 Yang, Y.J. 1997. Effect of controlled atmospheres on storage life in 'Niitaka' pear fruit. J. Kor. Soc. Hort. Sci. 38:734-738.
17 Kader, A.A., D. Zagory, E.L. Kerbel, and C.Y. Wang. 1989. Modified atmosphere packaging of fruits and vegetables. Critic. Rev. Food Sci. Nutri. 28:1-30.   DOI
18 Bukovac, M.J. 1963. Induction of parthenocarpic growth of apple fruits with gibberellin $A_3$ and $A_4$. Bot. Gaz. 124:191-195.   DOI
19 Choi, S.T. and R.N. Bae. 2007. Extending the postharvest quality of tomato fruit by 1-methylcyclopropene application. Kor. J. Hort. Sci. Technol. 25:6-11.   과학기술학회마을
20 Fan, X., L. Argenta, and J.P. Mattheis. 2002. Interative effects of 1-MCP and temperature on 'Elberta' peach quality. HortScience 37:134-138.
21 Jeong, S.T., J.G. Kim, S.S. Hong, H.S. Jang, and Y.B. Kim. 1998. Influence of maturity and storage temperature on the respiration rate and ethylene production in 'Kosui', 'Chojuro' and 'Niitaka' pears. J. Kor. Soc. Hort. Sci. 39:446-448.
22 Yuda, E., H. Matsui, S. Nakagawa, M. Yukimoto, and K. Wada. 1984. Effect of 15-${\beta}$-OH gibberellins on the fruit set and development of three pear species. J. Japan. Soc. Hort. Sci. 53:235-241.   DOI
23 Zhang, C., K. Tanabe, F. Tamura, A. Itai, and M. Yoshida. 2007a. Role of gibberellins in increasing sink demand in Japanese pear fruit during rapid fruit growth. Plant Growth Regul. 52:161-172   DOI
24 Zhang, C., K. Tanabe, H. Tani, H. Nakajima, M Mori, and E. Sakuno. 2007b. Biologically active gibberellins and ABA in fruit of two late-maturing Japanese pear (Pyrus pyrifolia Nakai) cultivars with contrasting fruit size. J. Amer. Soc. Hortic. Sci. 132:452-458.
25 Hwang, H.S., I.S. Shin, W.C. Cheon, Y.U. Shin, J.H. Hwang, and S.S. Hong. 2005. Breeding of a good quality, large size, and early summer season pear cultivar 'Hanareum' (Pyrus pyrifolia Nakai). Kor. J. Hort. Sci. Technol. 23:60-63.
26 Inomata, Y., S. Murase, S. Oikawa, T. Shinokawa, and K. Suzuki. 1992. Effect of gibberellin treatment on flowers of Japanese pear (Pyrus pyrifolia Nakai) after late frost damage. Bull. Fruit Tree Res. Stn. 23:123-136.
27 Kitamura, T., T. Iwata, T. Fukusima, Y. Furukawa, and T. Ishiguro. 1981. Studies of the maturation-physiology and storage of fruits and vegetables. II. Respiration and ethylene production in reference to species and cultivars of pear fruit. J. Japan. Soc. Hort. Sci. 49:608-616.   DOI
28 Lee, U.Y. and J.P. Chun. 2011. Evaluation of quality indices during fruit development and ripening in 'Wonhwang' and 'Whasan' pears. CNU J. Agri. Sci. 38:405-411.
29 Lee, U.Y., K.Y. Oh, J.H. Choi, Y.S. Hwang, J.M. Choi, and J.P. Chun. 2011. Evaluation of fruit quality during shelf-life at high temperature environment in 'Wonhwang' and 'Whasan' pears. J. Bio-Environ. Cont. 20:233-240.
30 Lee, U.Y., K.Y. Oh, S.J. Moon, Y.S. Hwang, and J.P. Chun. 2012. Effects of 1-methylcyclopropene (1-MCP) on fruit quality and occurrence of physiological disorders of Asia pear (Pyrus pyrifolia Nakai), 'Wonhwang' and 'Whasan' during shelf-life. Kor. J. Hort. Sci. Technol. 30:534-542.
31 Zhang, C., K. Tanabe, F. Tamura, K Matsumoto, and A. Yoshida. 2005. $^{13}C$-photosynthate accumulation in Japanese pear fruit during the period of rapid fruit growth is limited by the sink strength of fruit rather than by the transport capacity of the pedicel. J. Exp. Bot. 56:2713-2719.   DOI   ScienceOn