Browse > Article
http://dx.doi.org/10.7235/hort.2012.12040

Composition of Resveratrol and Other Bioactive Compounds, and Antioxidant Activities in Different Mulberry Cultivars  

Choi, Il-Sook (Department of Food and Nutrition, KyungHee University)
Moon, Yong-Sun (Department of Horticulture and Life Science, Yeungnam University)
Kwak, Eun-Jung (Department of Food Science and Technology, Yeungnam University)
Publication Information
Horticultural Science & Technology / v.30, no.3, 2012 , pp. 301-307 More about this Journal
Abstract
To develop high value added healthy functional resource from Korean mulberry, the bioactive compounds and antioxidant activities of three different mulberry cultivars were investigated and compared with blueberry and strawberry. Total phenolics, total flavonoids, and trans-resveratrol of 'Daesungppong' were the highest than the 'Suwonppong', whereas those of the strawberries were the lowest. In case of total anthocyanins, 'Daesungppong' was also the highest and followed by blueberry. The antioxidant activities of 'Daesungppong' using DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid), and FRAP (Ferric reducing antioxidant power) assays were the highest followed by 'Suwonppong'. Meanwhile, there were no significant differences in the antioxidant activities between 'Cheongilppong' and blueberry, and the activities of strawberry were the lowest. Furthermore, there was a strong correlation (r = 0.764-0.897) between DPPH, ABTS, and FRAP assays with the bioactive compounds such as total phenolics, total flavonoids, and total anthocyanins. Therefore, Korean mulberry, especially 'Daesungppong' demonstrated interesting biological properties that suggest its use as a potential source and high value added of natural antioxidant compounds and antioxidant activity.
Keywords
free radical scavenging activity; total anthocyanins; total flavonoids; total phenolics;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Prior, R.L., X. Wu, and K. Schaich. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53:4290-4302.   DOI   ScienceOn
2 Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26:1231-1237.   DOI   ScienceOn
3 Shen, Y., L. Jin, P. Xiao, Y. Lu, and J. Bao. 2009. Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size, and weight. J. Cereal Sci. 49:106-111.   DOI   ScienceOn
4 Song, W., H.J. Wang, P. Bucheli, P.F. Zhang, D.Z. Wei, and Y.H. Lu. 2009. Phytochemical profiles of different mulberry (Morus sp.) species from China. J. Agric. Food Chem. 57:9133-9140.   DOI   ScienceOn
5 Sung, G.B., H.B. Kim, I.P. Hong, S.H. Nam, and I.M. Chung. 2007. Characteristics of newly bred mulberry cultivar Daesungppong (Morus Lhou (Ser.) Koidz.) for mulberry fruit production. Korean J. Seric. Sci. 49:56-59.   과학기술학회마을
6 Trela, B.C. and A.L. Waterhouse. 1996. Resveratrol: Isomeric molar absorptivities and stability. J. Agric. Food Chem. 44: 1253-1257.   DOI   ScienceOn
7 Vinson, J.A., X. Su, L. Zubik, and P. Bose. 2001. Phenol antioxidant quantity and quality in Foods: Fruits. J. Agric. Food Chem. 49:5315-5321.   DOI
8 Wang, S.Y. and H. Jiao. 2000. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J. Agric. Food Chem. 48:5677-5684.   DOI   ScienceOn
9 Zheng, Y., C.Y. Wang, S.Y. Wang, and W. Zheng. 2003. Effect of high-oxygen atmospheres on blueberry phenolics, anthocyanins, and antioxidant capacity. J. Agric. Food Chem. 51:7162-7169.   DOI   ScienceOn
10 Koca, I. and B. Karadeniz. 2009. Antioxidant properties of blackberry and blueberry fruits grown in the black sea region of Turkey. Sci. Hortic. 121:447-450.   DOI   ScienceOn
11 Konic-Ristic, A., K. Savikin, G. Zdunic, T. Jankovic, Z. Juranic, N. Menkovic, and I. Stankovic. 2011. Biological activity and chemical composition of different berry juices. Food Chem. 125:1412-1417.   DOI
12 Lou, H., Y. Hu, L. Zhang, P. Sung, and H. Lu. 2012. Nondestructive evaluation of the changes of total flavonoid, total phenols, ABTS, and DPPH radical scavenging activities, and sugars during mulberry (Morus alba L.) fruits development by chlorophyll fluorescence and RGB intensity values. LWT-Food Sci. Technol. 47:19-24.   DOI
13 Moyer, R.A., K.E. Hummer, C.E. Finn, B. Frei, and R.E. Wrolstad. 2002. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J. Agric. Food Chem. 50:519-525.   DOI   ScienceOn
14 Nilsson, J., D. Pillai, G. Önning, C. Persson, Å. Nilsson, and B. Åkesson. 2005. Comparison of the 2,2'-azinobis-3-ethylbenzotiazoline- 6-sulfonic acid (ABTS) and ferric reducing antioxidant power (FRAP) methods to assess the total antioxidant capacity in extracts of fruit and vegetable. Mol. Nutr. Food Res. 49:239-246.   DOI
15 Guo, C., J. Yang, J. Wei, Y. Li, J. Xu, and Y. Jiang. 2003. Antioxidant activities of peel, pulp, and seed fractions of common fruits as determined by FRAP assay. Nutr. Res. 23:1719-1726.   DOI
16 Obon, J.M., M.C. Diaz-Garcia, and M.R. Castellar. 2011. Red fruit juice quality and authenticity control by HPLC. J. Food Compos. Anal. 24:760-771.   DOI
17 Park, S.W., Y.S. Jung, and K.C. Ko. 1997. Quantitative analysis of anthocyanins among mulberry cultivars and their pharmacological screening. J. Kor. Soc. Hort. Sci. 38:722-724.
18 Pincemail, J., C. Kevers, J. Tabart, J.O. Defraigne, and J. Dommes. 2012. Cultivars, culture conditions, and harvest time influence phenolic and ascorbic acid contents and antioxidant capacity of strawberry (Fragaria ${\times}$ ananassa). J. Food Sci. 77:C205-210.   DOI
19 Hogan, S., H. Chung, L. Zhang, J. Li, Y. Lee, Y. Dai, and K. Zhou. 2010. Antiproliferative and antioxidant properties of anthocyanin-rich extract from acai. Food Chem. 118:208-214.   DOI
20 Kim, A.J., M.W. Kim, N.Y. Woo, S.Y. Kim, H.B. Kim, Y.H. Kim, Y.H. Lim, and M.H. Kim. 2004. Study on the nutritional composition and antioxidative capacity of mulberry fruit (Ficus-4x). Korean J. Food Sci. Technol. 36:995-1000.   과학기술학회마을
21 Kim, E.O., Y.J. Lee, H.H. Leam, I.H. Seo, M.H. Yu, D.H. Kang, and S.W. Choi. 2010. Comparison of nutritional and functional constituents, and physicochemical characteristics of mulberrys from seven different Morus alba L. cultivars. J. Korean Soc. Food Sci. Nutr. 39:1467-1475.   과학기술학회마을   DOI
22 Kim, H.B., H.S. Bang, H.W. Lee, Y.S. Seuk, and G.B. Sung. 1999. Chemical characteristics of mulberry syncarp. Korean J. Seric. Sci. 41:123-128.   과학기술학회마을
23 Arnous, A., D.P. Makris, and P. Kefalas. 2001. Effect of principal polyphenol components in relation to antioxidant characteristics of aged red wines. J. Agric. Food Chem. 49:5736-5742.   DOI   ScienceOn
24 Kim, H.R., Y.H. Kwon, H.B. Kim, and B.H. Ahn. 2006. Characteristics of mulberry fruit and wine with varieties. J. Korean Soc. Appl. Biol. Chem. 49:209-214.   과학기술학회마을
25 Kim, S.Y., K.J. Park, and W.C. Lee. 1998. Antiinflammatory and antioxidative effects of Morus spp. fruit extract. Korean J. Medicinal Crop Sci. 6:204-209.   과학기술학회마을
26 Kim, T.W., Y.B. Kwon, J.H. Lee, I.S. Yang, J.K. Youn, H.S. Lee, and J.Y. Moon. 1996. A study on the antidiabetic effect of mulberry fruits. Korean J. Seric. Sci. 38:100-107.   과학기술학회마을
27 Bae, S.H. and H.J. Suh. 2007. Antioxidant activities of five different mulberry cultivars in Korea. LWT-Food Sci. Technol. 40:955-962.   DOI   ScienceOn
28 Baur, J.A., K.J. Pearson, and N.L. Price. 2006. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337-42.   DOI
29 Benzie, I.F. and J.J. Strain. 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 239:70-76.   DOI   ScienceOn
30 Brand-Williams, W., M.E. Cuvelier, and C. Berset. 1995. Use of a free-radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28:25-30.   DOI   ScienceOn
31 Chang, S.W., H.J. Kim, J.H. Song, K.Y. Lee, I.H. Kim, and Y.T. Rho. 2011. Determination of several phenolic compounds in cultivars of grape in Korea. Korean J. Food Preserv. 18: 328-334.   과학기술학회마을   DOI
32 Chen, Z., C. Zhu, and Z. Han. 2011. Effects of aqueous chlorine dioxide treatment on nutritional components and shelf-life mulberry fruit (Morus alba L.). J. Biosci. Bioeng. 111:675-681.   DOI