Browse > Article

Analysis of Seed Hair Formation Related Genes by EST Profiling in Carrot (Daucus carota var. sativa)  

Hwang, Eun-Mi (Department of Horticultural Biotechnology, Kyung Hee University)
Oh, Gyu-Dong (Department of Horticultural Biotechnology, Kyung Hee University)
Shim, Eun-Jo (Department of Horticultural Biotechnology, Kyung Hee University)
Jeon, Sang-Jin (Breeding Research Institute, Carrotop Seed Co.)
Park, Young-Doo (Department of Horticultural Biotechnology, Kyung Hee University)
Publication Information
Horticultural Science & Technology / v.28, no.6, 2010 , pp. 1039-1050 More about this Journal
Abstract
Carrot is one of the useful crops used abundantly in cooking in Western as well as Asia regions such as China and Korea. However, seed coats have hairs which should be removed to increase germination rate. Furthermore, because of seed hairs, farmers face several additional losses, such as time consumption, manpower, capital and so on, for seed handling. To prevent these problems, study of gene related hair formation using short-hair seed lines is required. We analyzed genes related to hair formation from seed through expressed sequenced tag (EST) profiling, based on the fact that the development of carrot seed hair is related to cellulose synthesis pathway in secondary cell wall synthesis stage. To study the gene expression related to hair formation of the carrot seed, a cDNA library was constructed by using the early maturation stage of the short-hair line (659-1) and hairy seed line (677-14). In short-hair (659-1) and hairy seed (677-14) lines, results from of EST profiling through BLASTX search analysis using the NCBI database showed that 172 and 224 unigenes had significant homology with known protein sequences, whereas 233 and 192 unigenes were not, respectively. All ESTs were grouped into 16 categories according to their putative functions. Twenty nine unigenes among all ESTs were considered to be genes regulating seed hair development from cellulose synthesis pathway during secondary cell wall synthesis stage; in results, 14 unigenes related to seed hair development were found only in hairy seed line.
Keywords
cDNA library; cellulose; secondary cell wall; short-hair seed; sucrose synthase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Arioli, T., L. Peng, A.S. Betzner, J. Burn, W. Wittke, W. Herth, C. Camilleri, H. Hofte, J. Plazinski, R. Birch, A. Cork, J. Glover, J. Redmond, and R.E. Williamson. 1998. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717-720.   DOI
2 Arpat, A.B., M. Waugh, J.P. Sullivan, M. Gonzales, D. Frisch, D. Main, T. Wood, A. Leslie, R.A. Wing, and T.A. Wilkins. 2004. Functional genomics of cell elongation in developing cotton fibers. Plant Mol. Biol. 54:911-929.   DOI   ScienceOn
3 Basra, A.S. and C.P. Malik. 1984. Development of the cotton fiber. Int. Rev. Cytol. 89:65-113.   DOI
4 Zrenner, R., M. Salanoubat, L. Willimitzer, and U. Sonnewald. 1995. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J. 7:97-107.   DOI   ScienceOn
5 Ruan, Y.L. and P.S. Chourey. 1998. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds. Plant Physiol. 118: 399-406.   DOI
6 Adams, M.D., A.R. Kerlavage, R.D. Fleischmann, R.A. Fuldner, C.J. Bult, N.H. Lee, E.F. Kirkness, K.G. Weinstock, J.D. Gocayne, O. White, G. Sutton, J.A. Blake, R.C. Brandon, M.W. Chiu, R.A. Clayton, R.T. Cline, M.D. Cotton, J.E. Hughes, L.D. Fine, L.M. Fitzgerald, W.M. FitzHugh, J.L. Fritchman, N.S.M. Geoghagen, A. Glodek, C.L. Gnehm, M.C. Hanna, E. Hedblom, P.S. Hinkle Jr., J.M. Kelley, K.M. Klimek, J.C. Kelley, L.I. Liu, S.M. Marmaros, J.M. Merrick, R.F. Moreno-Palanques, L.A. McDonald, D.T. Nguyen, S.M. Pellegrino, C.A. Phillips, S.E. Ryder, J.L. Scott, D.M. Saudek, R. Shirley, K.V. Small, T.A. Spriggs, T.R. Utterback, J.F. Weidman, Y. Li, R. Barthlow, D.P. Bednarik, L. Cao, M.A. Cepeda, T.A. Coleman, E.J. Collins, D. Dimke, P. Feng, A. Ferrie, C. Fischer, G.A. Hastings, W.W. He, J.S. Hu, K.A. Huddleston, J.M. Greene, J. Gruber, P. Hudson, A. Kim, D.L. Kozak, C. Kunsch, H.J. Ji, H.D. Li, P.S. Meissner, H. Olsen, L. Raymond, Y.F. Wei, J. Wing, C. Xu, G.L. Yu, S.M. Ruben, P.J. Dillon, M.R. Fannon, C.A. Rosen, W.A. Haseltine, C. Fields, C.M. Fraser, and J.C. Venter. 1995. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377:173-174.   DOI   ScienceOn
7 Uchimiya, H., S. Kiou, T. Shimazaki, S. Aotsuka, S. Takamatsu, R. Nishi, H. Hashimoto, Y. Matsubayashi, N. Kidou, M. Umeda, and A. Kato. 1992. Random sequencing of cDNA libraries reveals a variety of expressed genes in cultured cells of rice. Plant J. 2:1005-1009.   DOI
8 Wanjie, S.W., R. Welti, R.A. Moreau, and K.D. Chapman. 2005. Identification and quantification of glycerolipids in cotton fibers: reconciliation with metabolic pathway predictions from DNA databases. Lipids 40:773-785.   DOI   ScienceOn
9 Yves, A.G., S. Bourot, T. Arioli, E.S. Dennis, and J.L. Danny. 2009. Transcript profiling during fiber development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton fiber quality. Plant Cell Physiol. 50:1364-1381.   DOI   ScienceOn
10 Zhang, L., X.L. Ma, Q. Zhang, C.L. Ma, P.P. Wang, Y.F. Sun, Y.X. Zhao, and H. Zhang. 2001. Expressed sequence tags from a NaCl-treated Suaeda salsa cDNA library. Gene 267:193-200.   DOI   ScienceOn
11 Ruan, Y.L., P.S. Chourey, D.P. Delmer, and L. Perez-Grau. 1997. The differential expression of sucrose synthase in relation to diverse patterns of carbon partitioning in developing cotton seed. Plant Physiol. 115:375-385.
12 Somerville, C. 2006. Cellulose synthesis in higher plants. Ann.Rev. Cell Dev. Biol. 22:53-78.   DOI   ScienceOn
13 Ronning, C.M., S.S. Stegalkina, R.A. Ascenzi, O. Bougri, A.L. Hart, T.R. Utterbach, S.E. Vanaken, S.B. Riedmuller, J.A. White, J. Cho, G.M. Pertea, Y. Lee, S. Karamycheva, R. Sultana, J. Tsai, J. Quackenbush, H.M. Griffiths, S. Restrepo, C.D. Smart, W.E. Fry, R. Van Der Hoeven, S. Tanksley, P. Zhang, H. Jin, M.L. Yamamoto, B.J. Baker, and C.R. Buell. 2003. Comparative analyses of potato expressed sequence tag libraries. Plant Physiol. 131:419-429.   DOI   ScienceOn
14 Park, Y., M.S. Cho, Y.S. Kim, and S.G. Park. 2002. A promising carrot mutant, spineless seeds. J. Kor. Soc. Hort. Sci. 43: 707-709.
15 Pavy, N., C. Paule, L. Parsons, J.A. Crow, M.J. Morency, J. Cooke, J.E. Johnson, E. Noumen, C. Guillet-Claude, Y. Butterfield, S. Barber, G. Yang, J. Liu, J. Stott, R. Kirkpatrick, A. Siddiqui, R. Holt, M. Marra, A. Seguin, E. Retzel, J. Bousquet, and J. MacKay. 2005. Generation, annotation, analysis and database integration of 16,500 white spruce EST clusters. BMC Genomics 6:144.   DOI
16 Pear, J.R., Y. Kawagoe, W.E. Schreckengost, D.P. Delmer, and D.M. Stalker. 1996. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc. Natl. Acad. Sci. USA. 93:12637-12642.   DOI   ScienceOn
17 Nolte, K.D., D.L. Hendrix, J.W. Radin, and K.E. Koch. 1995. Sucrose synthase localization during initiation of seed development and trichome differentiation in cotton ovules. Plant Physiol. 109:1285-1293.
18 Gou, J.Y., L.J. Wang, S.P. Chen, W.L. Hu, and X.Y. Chen. 2007. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res. 17:422-434.
19 Lee, P.S. and K.H. Lee. 2000. Genomic analysis. Curr. Opin. Biotechnol. 11:171-175.   DOI   ScienceOn
20 Menon, A.R.S. and Y. Dave. 1989. Micromorphology of hairs and spines on ovary and fruit of Daucus carota L. var. sativa (The cultivated carrot). Bot. Mat. Tokyo 102:503-509.   DOI
21 Applequist, W.L., R. Cronn, and J.F. Wendel. 2001. Comparative development of fiber in wild and cultivated cotton. Evol. Dev. 3:3-17.   DOI   ScienceOn
22 Ogihara, Y., K. Mochida, Y. Nemoto, K. Murai, Y. Yamazaki, I.T. Shin, and Y. Kohara. 2003. Correlated clustering and virtual display of gene expression patterns in the wheat life cycle by large-scale statistical analyses of expressed sequence tags. Plant J. 33:1001-1011.   DOI   ScienceOn
23 Chourey, P.S. and O.E. Nelson. 1976. The enzymatic deficiency conditioned by the shrunken 1 mutation in maize. Biochem. Genet. 14:1041-1055.   DOI   ScienceOn
24 Ewing, R.M., A.B. Kahla, O. Poirot, F. Lopez, S. Audic, and J.M. Claverie. 1999. Large-scale statistics analyses of rice ESTs reveal correlated patterns of gene expression. Genome Res. 9:950-959.   DOI   ScienceOn
25 Betancur, L., B. Singh, R.A. Rapp, J.F. Wendel, M.D. Marks, A.W. Roberts, and C.H. Haigler. 2010. Phylogenetically distinct cellulose synthase genes support secondary wall thickening in arabidopsis shoot trichomes and cotton fiber. J. Integr. Plant Biol. 52:205-220.   DOI   ScienceOn
26 Boguski, M.S. and G.D. Schuler. 1995. EST ablishing a human transcript map. Nat. Genet. 10:369-371.   DOI   ScienceOn
27 Brett, C.T. and K.W. Waldron. 1996. Physiology and Biochemistry of Plant Cell Walls, 2nd ed. Chapman and Hall. London.
28 Brown, D.M., L.A. Zeef, J. Ellis, R. Goodacre, and S.R. Turner. 2005. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281-2295.   DOI   ScienceOn
29 Amor, Y., C.H. Haigler, S. Johnson, M. Wainscott, and D.P. Delmer. 1995. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci. USA. 92:9353-9357.   DOI   ScienceOn