Browse > Article

Development of a SNP Marker Set for Tomato Cultivar Identification  

Bae, Joong-Hwan (Department of Plant Science, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University)
Han, Yang (School of Life science, Liaoning University)
Jeong, Hee-Jin (Department of Plant Science, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University)
Kwon, Jin-Kyung (Department of Plant Science, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University)
Chae, Young (National Institute of Horticultural & Herbal Science)
Choi, Hak-Soon (National Institute of Horticultural & Herbal Science)
Kang, Byoung-Cheorl (Department of Plant Science, and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University)
Publication Information
Horticultural Science & Technology / v.28, no.4, 2010 , pp. 627-637 More about this Journal
Abstract
The consumption of tomato has greatly increased recently in Korea, and a large number of tomato cultivars are commercially available in the market. However, identification of tomato cultivars by morphological traits is extremely difficult because of the narrow genetic diversity of breeding lines. Therefore, it is necessary to develop molecular markers for cultivar identification in tomato. In this study, we surveyed single nucleotide polymorphism (SNP), and developed SNP marker sets for tomato cultivar identification. SNP markers were developed based on conserved ortholog set II (COSII) and intron-based markers derived from pepper EST sequences, and marker polymorphism was tested using high-resolution melting (HRM) analysis. A total of 628 primer sets was tested, and 417 primer sets amplifying single bands were selected. Of the 417 primer sets, 70 primer sets showing HRM polymorphism among 4 inbred lines were selected. Eleven markers were selected from the 70 primer sets and subjected to cultivar identification analysis. Thirty two commercial tomato cultivars were successfully identified using the marker set.
Keywords
high resolution melting(HRM); single nucleotide polymorphism; Solanum lycopersicum;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 The Arabidopsis Genome Initiative. 2001. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature (London) 408:196-815.
2 Wang, D.G., J.B. Fan, C.G. Siao, A. Berno, and P. Young. 1998. Large-scale identification, mapping, and genotyping of singlenucleotide polymorphisms in the human genome. Science 280:1077-1082.   DOI
3 Cooke, R.J., G.M.M. Bredemeijer, M.W. Ganal, R. Peeters, P. Isaac, S. Rendell, J. Jackson, M.S. Roder, V. Korzun, K. Wendehake, T. Areshchenkova, M. Dijcks, D. Laborie, L. Bertrand, and B. Vosman. 2003. Assessment of the uniformity of wheat and tomato varieties at DNA microsatellite loci. Euphytica 132:331-341.   DOI   ScienceOn
4 Gundry, C.N., J.G. Vandersteen, G.H. Reed, R.J. Pryor, J. Chen, and C.T. Wittwer. 2003. Amplicon melting analysis with labeled primers: A closed-tube method for differentiating momozygotes and heterozygotes. Clin. Chem. 49:396-406.   DOI   ScienceOn
5 Van Deynze, A.E., K. Stoffel, C.R. Buell. A. Kozik, J. Liu, E. Van der Knaap. and D. Francis. 2007a. Diversity in conserved genes in tomato. BMC Genomics 8:465-473.   DOI
6 Reed, G.H. and C.T. Wittwer. 2004. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin. Chem. 50:1748-1754.   DOI   ScienceOn
7 Stevens, M.R., E.M. Lamb, and D.D. Rhoads. 1995. Mapping the Sw-5 locus for tomato spotted wilt virus resistance in tomatoes using RAPD and RFLP analyses. Theor. Appl. Genet. 90:451-456.
8 Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mole. Biol. Evol. 24:1596-1599.   DOI   ScienceOn
9 Van Ooijen, J.W., J.M. Sandbrink, M. Vrielink, R. Verkerk, P. Zabel, and P. Lindhout. 1994. An RFLP linkage map of Lycopersicon peruvianum. Theor. Appl. Genet. 89:1007-1013.
10 Van Deynze, A.E., T.A. Wilkins, K. Stoffel, M. Lee, D. Stelly, and A. Kozik. 2007b. A set of informative markers designed specifically for breeding cotton. In Plant and Animal Genome XV. San Diego, CA. Scherago International.
11 Wu, S.B., M.G. Wirthensohn, P. Hunt, J.P. Gibson, and M. Sedgley. 2008. High resolution melting analysis of almond SNPs derived from ESTs. Theor. Appl. Genet. 118:1-14.   DOI   ScienceOn
12 Miller, J.C. and S.D. Tanksley. 1990. RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor. Appl. Genet. 80:437-448.
13 Montgomery, J. C.T. Wittwer, P. Robert, and Z. Luming. 2007. Simultaneous mutation scanning and genotyping by high resolution DNA melting analysis. Nat. Protoc. 2:59-66.
14 Nesbitt, T.C. and S.D. Tanksley. 2002. Comparative sequencing in the genus Lycopersicon: implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162:365-379.
15 Oefner, P.J., and P.A Underhill. 1995. Comparative DNA sequencing by denaturing high-performance liquid chromatography (DHPLC). Am. J. Hum. Genet. 57:A266.   DOI   ScienceOn
16 Park, Y.H., M.A.L. West, and D.A. St. Clair. 2004. Evaluation of AFLPs for germplasm fingerprinting and assessment of genetic diversity in cultivars of tomato (Lycopesicon esculentum L.). Genome 47:510-518.   DOI   ScienceOn
17 Orita, M., H. Iwahana, H. Kanazawa, K. Hayashi, and T. Sekiya. 1989. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86:2766-2770.   DOI   ScienceOn
18 Park, J.I., H.T. Kim, J.K. Kim, D.Y. Shin, and I.S. Nou. 2000. Identification of species using phenotypic traits and RAPD analysis in introduced tomato allies. Kor. J. Breed. 32:64-73.
19 Park, S.W., S.J. An, H.B. Yang, J.K. Kwon, and B.C. Kang. 2009. Optimization of high resolution melting analysis and discovery of single nucleotide polymorphism in Capsicum. Hort. Environ. Biotechnol. 50:31-39.
20 Prince, J.P., T. Zhang, E.R. Radwanski, and M.M. Kyle. 1997. A versatile and high-yielding protocol for the preparation of genomic DNA from Capsicum spp. (pepper). HortScience. 32:937-939.
21 Qian, W., S. Ge, and D.Y. Hong. 2001. Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theor. Appl. Genet. 102:440-449.   DOI   ScienceOn
22 Rapley, R. and S.E. Harbron. 2004. Molecular Analysis and Genome Discovery. Wiley, Sussex, UK.
23 Feltus, F.A., H.P. Singh, H.C. Lohithaswa, S.R. Schulze, T.D. Silva, and A.H. Paterson. 2006. A comparative genomics strategy for targeted discovery of single-nucleotide polymorphisms and conserved-noncoding sequences in orphan crops. Plant Physiol. 140:1183-1191.   DOI
24 Fourmann, M., P. Barret, N. Froger, C. Baron, F. Charlot, R. Delourme, and D. Brunel. 2002. From Arabidopsis thaliana to Brassica napus: development of amplified consensus genetic markers (ACGM) for construction of a gene map. Theor. Appl. Genet. 105:1196-1206.   DOI   ScienceOn
25 Kwon, Y.S., E.K. Park, K.M. Bae, S.I. Yi, S.G. Park, and I.H. Cho. 2006. Use of simple sequence repeat (SSR) markers for variety identification of tomato (Lycopersicon esculentum). J. Plant Biotechnol. 33:289-295.   과학기술학회마을   DOI
26 He, C., V. Poysa, and K. Yu. 2003. Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivar. Theor. Appl. Genet. 106:363-373.
27 Hoffmann, M., J. Hurlebaus, and C. Weike. 2007. Novel method for high-performance melting curve analysis using the $LightCycler^{\circledR}$ 480 system. Biochemica 1:17-19.
28 Kim, S. and S. Misra. 2007. SNP genotyping: technologies and biomedical applications. Annu. Rev. Biomed. Eng. 9:289-320.   DOI   ScienceOn
29 Labate, J.A., L.D. Robertson, F. Wu, and S.D. Tanksley. 2009. EST, COS II, and arbitrary gene markers give similar estimates of nucleotide diversity in cultivated tomato (Solanum lycopersicum L.). Theor. Appl. Genet. 188:1005-1014.
30 Lehmensiek, A., M.W. Sutherland, and R.B. McNamara. 2008. The use of high resolution melting (HRM) to map single nucleotide polymorphism markers linked to a covered smut resistance gene in barley. Theor. Appl. Genet. 117:721-728.   DOI   ScienceOn
31 Mackay, J.F., C.D. Wright, and R.G. Bonfiglioli. 2008. A new approach to varietal identification in plants by microsatellite high resolution melting analysis: application to the verification of grapevine and olive cultivars. Plant Methods 4:8.   DOI
32 Desai, U.J. and P.K. Pfaffle. 1995. Single-step purification of a thermostable DNA polymerase expressed in Escherichia coli. Biotechniques 19:780-782, 784.
33 Balogh, K., A. Patocs, J. Majnik, K. Racz, and L. Hunyady. 2004. Genetic screening methods for the detection of mutations responsible for multiple endocrine neoplasia type 1. Mol. Genet. Metab. 83:74-81.   DOI
34 Ching, A., K.S. Caldwell, M. Jung, M. Dolan, O.S. Smith, S. Tingey, M. Morgante, and A.J. Rafalski. 2002. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet. 3:19.   DOI