Browse > Article

Sulforaphane and Total Phenolics Contents and Antioxidant Activity of Radish according to Genotype and Cultivation Location with Different Altitudes  

Im, Ju-Sung (Highland Agriculture Research Center, National Institute of Crop Science)
Lee, Eung-Ho (Protected Horticulture Research Station, National Institute of Horticultural & Herbal Science)
Lee, Jong-Nam (Highland Agriculture Research Center, National Institute of Crop Science)
Kim, Ki-Deog (Highland Agriculture Research Center, National Institute of Crop Science)
Kim, Hwa-Yeong (Department of Applied Plant Science, Kangnung-Wonju National University)
Kim, Myung-Jun (Institute of Agricultural Science and Technology, Chonbuk National University)
Publication Information
Horticultural Science & Technology / v.28, no.3, 2010 , pp. 335-342 More about this Journal
Abstract
Sulforaphane (SFN) and total phenolics (TPC) contents and antioxidant activity (AA) were analyzed from 13 radish genotypes (Rhaphanus sativus L.), cultivated at 3 locations with different altitudes (Gangneung: asl 5 m, Jinbu: asl 550 m, and Daegwallyeong: asl 750 m). SFN varied greatly from 0.1 to $120.5{\mu}g{\cdot}g^{-1}$ in dry weight test and was significantly affected by location ($P{\leq}0.001$), genotype ($P{\leq}0.001$) and $location{\times}genotype$ interaction ($P{\leq}0.01$). Radishes, cultivated at Daegwallyeong site, showed higher SFN than those of other locations. Among different genotypes, the root of 'Black radish' and leaves of 'Purunmu' of Daegwallyeong had the highest SFN (107.8 and $120.5{\mu}g{\cdot}g^{-1}$, respectively). TPC in root was affected by genotype ($P{\leq}0.001$), and $location{\times}genotype$ interaction ($P{\leq}0.01$), but not by location. In leaves, TPC was affected by location ($P{\leq}0.01$), genotype ($P{\leq}0.001$), and $location{\times}genotype$ interaction ($P{\leq}0.001$). AA expressed as electron donating ability was significantly influenced by location, genotype and $location{\times}genotype$ interaction and correlated positively with TPC ($Pearson $r$=0.897) in root. These results suggest that radish could be a good source of functional food and high altitude location such as Daegwallyeong has potential for the production of radish with high content of health promoting factors.
Keywords
Cruciferae; electron donating ability; isothiocyanate; Rhaphanus sativus;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Palace, V.P., N. Khaper, Q. Qin, and Singal P.K. 1999. Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radic. Biol. Med. 26:746-761.   DOI   ScienceOn
2 Yim, H.B., G.S. Lee, and H.J. Chae. 2004. Cytotoxicity of ethanol extract of Raphanuse Sativus on a human lung cancer cell line. J. Korean Soc. Food Sci. Nutr. 33:287-290.   과학기술학회마을   DOI
3 Yoon, W.M., S.S. Lee, J.Y. Yoon, and H.K. Pyo. 1983. Studies on bolting of stored seeds of radish (Raphanus sativus L.). J. Kor. Soc. Hort. Sci. 24:188-192.
4 Yu, L., J. Perret, M. Harris, J. Wilson, and S. Haley. 2003. Antioxidant properties of bran extracts from "Akron" wheat grown at different locations. J. Agric. Food Chem. 51:1566-1570.   DOI   ScienceOn
5 Zhang, Y., P. Talalay, C.G. Cho, and G.H. Posner. 1992. A major inducer of anticarcinogenic protective enzymes from broccoli: Isolation and elucidation of structure. Proc. Natl. Acad. Sci. U.S.A. 89:2399-2403.
6 Zhang Y. and P. Talalay. 1994. Anticarcinogenic activities of organic isothiocyanates: Chemistry and Mechanisms. Cancer Res. 54:1976-1981.
7 Rosa, E.A.S., R.K. Heaney, C.A.M. Portas, and G.R. Fenwick. 1996. Changes in glucosinolate concentrations in Brassica crops (B. oleracea and B. napus) throughout growing seasons. J. Sci. Food Agr. 71:237-244.   DOI   ScienceOn
8 Stahelin, H.B., K.F. Gey, M. Eichholzer, and E. Ludin. 1991. Beta-carotene and cancer prevention: the Basel Study. Amer. J. Clin. Nutr. 53:265-269.   DOI
9 Vallejo, F., F.A. Tomas-Barberan, and C. Garcia-Viguera. 2003. Effect of climatic and sulfur fertilization conditions, on phenolic compounds and vitamin C, in the influorescences of eight broccoli cultivars. Eur. Food Res. Technol. 216:395-401.   DOI
10 Wang, H., G.H. Cao, and R.L. Prior. 1996. Total antioxidant capacity of fruits. J. Agric. Food Chem. 44:701-705.   DOI   ScienceOn
11 Wang, S.Y. and W. Zheng. 2001. Effect of plant growth temperature on antioxidant capacity in strawberry. J. Agric. Food Chem. 49:4977-4982.   DOI   ScienceOn
12 Madsen, H.L., C.M. Andersen, L.V. Jorgensen, and L.H. Skibsted. 2000. Radical scavenging by dietary flavonoids. A kinetic study of antioxidant efficiencies. Eur. Food Res. Technol. 211:240-246.   DOI   ScienceOn
13 Willet, C.W. 1994. Micronutrients and cancer risk. Am. J. Clin. Nutr. 59:162-165.
14 Xiangfei, L., A. Shane, B. Marisa, P. John, Z. Kequan, S. Cecil, S. Frank, Y. Liangli, and K. Patricia. 2007. Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. Food Sci. Technol. 40:552-557.
15 Yasushi, N., I. Takako, T. Atsuo, K. Jun, M. Tomoaki, O. Shigehisa, S. Kenji, and O. Kozo. 2001. 4-(methylthio)-3- butenyl isothiocyanate, a principal antimutagen in daikon (Raphanus sativus; Japanese white radish). J. Agric. Food Chem. 49:5755-5760.   DOI   ScienceOn
16 Mohamed, B., C. Mohamed, and S. Sami. 2004. Comparative study on phenolic content and antioxidant activity during maturation of the olive cultivar chemlali from Tunisia. J. Agric. Food Chem. 52:5476-5481.   DOI   ScienceOn
17 Mulcahy R.T., M.A. Wartman, H.H. Bailey, and J.J. Gipp. 1997. Constitutive and b-naphtho-avone-induced expression of the human g-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence. J. Biol. Chem. 272:7445-7454.   DOI
18 Nakagawa, K., U. Toshiko, H. Ohki, T. Tsuyoshi, S. Toshihide, and M. Teruo. 2006. Evaporative light scattering analysis of sulforaphane in broccoli samples: Quality of broccoli products regarding sulforaphane contents. J. Agric. Food Chem. 54: 2479-2483.   DOI   ScienceOn
19 Oomah, B.D., C.G. Campbell, and G. Mazza. 1996. Effects of cultivar and environment on phenolic acids in buckwheat. Euphytica 90:73-77.
20 National Institute of Highland Agriculture (NIHA). 2005. Research reports for 2005. Natl. Inst. Highland Agr. R.D.A. p. 399-413.
21 Park, Y.K., D.H. Choi, H.J. Lee, S.S. Lee, W.Y. Lee, and J.K. Ahn. 2004. Structure-antioxidant activity relationships of isoflavonoids. J. Kor. Wood Sci. Technol. 32:66-70.
22 Pompella, A., A. Visvikis, A. Paolicchi, V. De Tata, and A.F. Casini. 2003. The changing faces of glutathione, a cellular protagonist. Biochem. Pharmacol. 66:1499-1503.   DOI   ScienceOn
23 Kim, M.R. and H.S. Rhee. 1993. Decrease in pungency in Radish Kimchi during fermentation. J. Food Sci. 58:128-132.   DOI   ScienceOn
24 Kim, S.J., B.S. Kim, T.W. Kyung, S.C. Lee, C.W. Rho, K.R. Choi, H.J. Hwang, and H.S. Choi. 2006. Suppressive effects of young radish cultivated with sulfur on growth and metastasis of B16-F10 melanoma cells. Arch. Pharm Res. 29:235-240.   과학기술학회마을   DOI
25 Knekt, P., R. Jarvinen, R. Seppanen, M. Heliovaara, L. Teppo, and A. Aroma. 1997. Dietary flavonoids and the risk of lung cancer and other malignant neoplasm. Amer. J. Epidemiology 146:223-230.   DOI   ScienceOn
26 Liang, H., Q.P. Yuan, H.R. Dong, and Y.M. Liu. 2006. Determination of sulforaphane in broccoli and cabbage by highperformance liquid chromatography. J. Food Composition and Analysis 19:473-476.   DOI   ScienceOn
27 Kwon, Y.D., E.Y. Ko, S.J. Hong, and S.W. Park. 2008. Comparison of sulforaphane and antioxidant contents according to different parts and maturity of broccoli. Kor. J. Hort. Sci. Technol. 26:344-349.
28 Lee, J.M., I.O. Yoo, and B.H. Min. 1996. Effect of cultivars and cultural conditions on the pungent principle contents in radish roots. Kor. J. Hort. Sci. Technol. 37:349-356.
29 Liang, H., Q.P. Yuan, and Q. Xiao. 2005. Purification of sulforaphane from Brassica oleracea seed meal using low-pressure column chromatography. J. Chrom. B. 828:91-96.   DOI
30 Hwang, C.W. 2003. Antifungal activity of Korean radish (Raphanus sativaus L) extracts against pathogenic plant. Kor. J. Life Sci.13:223-229.   과학기술학회마을   DOI
31 Kahkonen, M.P., A.I. Hopia, H.J. Vuorela, J.P. Rauha, R.K. Pihlaja, T.S. Kujala, and M. Heinonen. 1999. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 47:3954-3962.   DOI   ScienceOn
32 Kaur, C. and H.C. Kapoor. 2001. Antioxidants in fruits and vegetables-the millennium's health. Inter. J. Food Sci. Technol. 36:703-725.   DOI   ScienceOn
33 Gamet-Payrastre L., P. Li, S. Lumeau, G. Cassar, M.A. Dupont, S. Chevolleau, N. Gasc, J. Tulliez, and F. Terce. 2000. Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res. 60:1426-1433.
34 Kim, J.D., S.W. Ahn, and I.B. Song. 2004. A research on the radish based on the Sasang Constitutional Medicine. Kor. J. Oriental Med. 10:63-80.
35 Kim, M.R., K.J. Lee, J.H. Kim, and D.E. Sok. 1997. Determination of sulforaphane in cruciferous vegetables by SIM. Kor. J. Food Sci. Technol. 29:882-887.
36 Fahey, J.W. and P. Talalay. 1999. Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes. Food Chem. Toxic. 37:973-979.   DOI   ScienceOn
37 Cao, G., E. Sofic, and R.L. Prior. 1996. Antioxidant capacity of tea and common vegetables. J. Agric. Food Chem. 44:3426-3431.   DOI   ScienceOn
38 Hamilton, S.M. and R.W. Teel. 1996. Effects of isothiocyanates on cytochrome P-450 1A1 and 1A2 activity and on the mutagenicity of heterocyclic amines. Anticancer Res. 16:3597- 3602.
39 Hashem, F.A. and M.M. Saleh. 1999. Antimicrobial components of some cruciferae plants. Phytotherapy Res. 13:329-332.   DOI   ScienceOn
40 Hecht, S.S. 1999. Chemoprevention of cancer by isothiocyanates, modifiers of carcinogen metabolism. J. Nutr. 129:768-774.   DOI
41 Chiao, J.W., F.L. Chung, R.T. Kancherla, T. Ahmed, A. Mittelman, and C.C. Conaway. 2002. Sulforaphane and its metabolite mediate growth arrest and apoptosis in human prostate cancer cells. Int. J. Oncol. 20:631-636.
42 Craig, S.C. and E.S. Carl. 2004. Glucosinolate content and myrosinase activity in rapid-cycling Brassica oleracea grown in a controlled environment. J. Amer. Soc. Hort. Sci. 129:321-330.
43 Fahey, J.W., Y. Zhang, and P. Talalay. 1997. Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc. Natl. Sci. USA 94:10367-10372.   DOI   ScienceOn