Browse > Article
http://dx.doi.org/10.5656/KSAE.2022.06.0.035

Comparative Analysis of Cold Tolerance and Overwintering Site of Two Flower Thrips, Frankliniella occidentalis and F. intonsa  

Chulyoung, Kim (Department of Plant Medicals, College of Life Sciences, Andong National University)
Du-yeol, Choi (Department of Plant Medicals, College of Life Sciences, Andong National University)
Falguni, Khan (Department of Plant Medicals, College of Life Sciences, Andong National University)
Md Tafim Hossain, Hrithik (Department of Plant Medicals, College of Life Sciences, Andong National University)
Jooan, Hong (Department of Plant Medicals, College of Life Sciences, Andong National University)
Yonggyun, Kim (Department of Plant Medicals, College of Life Sciences, Andong National University)
Publication Information
Korean journal of applied entomology / v.61, no.3, 2022 , pp. 409-422 More about this Journal
Abstract
Two dominant thrips in hot pepper (Capsicum annuum) cultivating in greenhouses are Frankliniella occidentalis and F. intonsa in Korea. This study investigated their overwintering physiology. These two thrips were freeze-susceptible and suppressed the body freezing temperature by lowering supercooling point (SCP) down to -15~-27℃. However, these SCPs varied among species and developmental stages. SCPs of F. occidentalis were -25.7±0.5℃ for adults, -17.2±0.3℃ for pupae, and -15.0±0.4℃ for larvae. SCPs of F. intonsa were -24.0±1.0℃ for adults, -27.0±0.5℃ for pupae, -17.2±0.8℃ for larvae. Cold injuries of both species occurred at low temperature treatments above SCPs. Thrips mortality increased as the treatment temperature decreased and its exposure period increased. F. occidentalis exhibited higher cold tolerance than F. intonsa. In both species, adults were more cold-tolerant than larvae. Two thrips species exhibited a rapid cold hardening because a pre-exposure to 0℃ for 2 h significantly enhanced the cold tolerance to a lethal cold temperature treatment at -10℃ for 2 h. In addition, a sequential exposure of the thrips to decreasing temperatures made them to be acclimated to low temperatures. To investigate the overwintering sites of the two species, winter monitoring of the thrips was performed at the greenhouses. During winter season (November~February), adults of the two species were not captured in outside of the greenhouses. However, F. occidentalis adults were captured to the traps and observed in weeds within the greenhouses. F. occidentalis adults were also emerged from soil samples obtained from the greenhouses during the winter season. F. intonsa adults did not come out from the soil samples at November and December, but emerged from the soil samples obtained after January. To determine the adult emergence due to diapause development, two thrips species were reared under different photoperiods. Adult development occurred in all photoperiod treatments in F. occidentalis, but did not in F. intonsa especially under short periods. Tomato spotted wilt virus, which is transmitted by these two species, was detected in the weeds infested by the thrips during the winter season. These results suggest that F. occidentalis develops on weeds in the greenhouses while F. intonsa undergoes a diapause in the soil during winter.
Keywords
Frankliniella occidentalis; Frankliniella intonsa; Supercooling Point; Rapid Cold Hardiness; Overwintering; Hibernacula; Diapause;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ahn, J., Choi, K., Huang, S.Y., Al Baki, M.A., Ahmed, S., Kim, Y., 2018. Calcium/calmodulin-dependent protein kinase II of the oriental fruit fly, Bactrocera dorsalis, and its association with rapid cold hardiness. J. Asia Pac. Entomol. 21, 1275-1282.   DOI
2 Bale, J.S., Hayward, S.A., 2010. Insect overwintering in a changing climate. J. Exp. Biol. 213, 980-994.   DOI
3 Barbagallo, B., Garrity, P.A., 2015. Temperature sensation in Drosophila. Curr. Opin. Neurobiol. 34, 8-13.   DOI
4 Brodsgaard, H.F., 1993. Cold hardiness and tolerance to submergence in water in Frankliniella occidentalis (Thysanoptera: Thripidae). Environ. Entomol. 22, 647-653.   DOI
5 Costanzo, J.P., Humphreys, T.L., Lee, Jr., R.E., Moore, J.B., Lee, M.R., Wyman, J.A., 1998. Long-term reduction of cold hardiness following ingestion of ice-nucleating bacteria in the Colorado potato beetle, Leptinotarsa decemlineata. J. Insect Physiol. 44, 1173-1180.   DOI
6 Ditrich, T., 2018. Supercooling point is an individually fixed metric of cold tolerance in Pyrrhocoris apterus. J. Therm. Biol. 74, 208-213.   DOI
7 Dong, W., Cheng, T., Li, C., Xu, C., Long, P., Chen, C., Zhou, S., 2014. Discriminating plants using the DNA barcode rbcLb: an appraisal based on a large data set. Mol. Ecol. Resour. 14, 336-343.   DOI
8 Feng, Q., 2014. Temperature sensing by thermal TRP channels: thermodynamic basis and molecular insights. Curr. Top. Membr. 74, 19-50.   DOI
9 Gallio, M., Ofstad, T.A., Macpherson, L.J., Wang, J.W., Zuker, C.S., 2011. The coding of temperature in the Drosophila brain. Cell 144, 614-624.   DOI
10 Hamada, F.N., Rosenzweig, M., Kang, K., Pulver, S.R., Ghezzi, A., Jegla, T.J., Garrity, P.A., 2008. An internal thermal sensor controlling temperature preference in Drosophila. Nature 454, 217-220.   DOI
11 Hasebe, M., Omori, T., Nakazawa, M., Sano, T., Kato, M., Iwatsuki, K., 1994. rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proc. Natl. Acad. Sci. USA 91, 5730-5734.   DOI
12 Ishida, H., Murai, T., Sonoda, S., Yoshida, H., Izumi, Y., Tsumuki, H., 2003. Effects of temperature and photoperiod on development and oviposition of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Appl. Entomol. Zool. 38, 65-68.   DOI
13 Jung, J.K., Seo, B.Y., Kim, Y., Lee, S.W., 2016. Can Maruca vitrata (Lepidoptera: Crambidae) over-winter in Suwon area? Korean J. Appl. Entomol. 55, 439-444.   DOI
14 Kim, Y., Kim, N., 1997. Cold hardiness in Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 26, 1117-1123.   DOI
15 Kim, Y., Song, W., 2000. Effect of thermoperiod and photoperiod on cold tolerance of Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 29, 868-873.   DOI
16 Kim, Y., Lee, D.W., Jung, J.K., 2017. Rapid cold-hardening of a subtropical species, Maruca vitrata (Lepidoptera: Crambidae), accompanies hypertrehalosemia by upregulating trehalose-6-phosphate synthase. Environ. Entomol. 46, 1432-1438.   DOI
17 Kim, C.Y., Choi, D.Y., Kang, J.H., Ahmed, S., Kil, E.J., Kwon, G.M., Lee, G.S., Kim, Y., 2021. Thrips infesting hot pepper cultured in greenhouses and variation in gene sequences encoded in TSWV. Korean J. Appl. Entomol. 60, 381-401.
18 Lee, R.E. Jr., Damodaran, K., Yi, S.X., Lorigan, G.A., 2006. Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells. Cryobiology 52, 459-463.   DOI
19 Kita, Y., Ito, M., 2000. Nuclear ribosomal ITS sequences and phylogeny in East Asian Aconitum subgenus Aconitum (Ranunculaceae), with special reference to extensive polymorphism in individual plants. Plant Syst. Evol. 225, 1-13.   DOI
20 Lee, G.S., Lee, J.H., Kang, S.H., Woo, K.S., 2001. Thrips species (Thysanoptera: Thripidae) in winter season and their vernal activities on Jeju island, Korea. J. Asia Pac. Entomol. 4, 115-122.   DOI
21 Li, K., Gong, Z., 2017. Feeling hot and cold: thermal sensation in Drosophila. Neurosci. Bull. 33, 317-322.   DOI
22 Ni, L., Bronk, P., Chang, E.C., Lowell, A.M., Flam, J.O., Panzano, V.C., Theobald, D.L., Griffith, L.C., Garrity, P.A., 2013. A gustatory receptor paralogue controls rapid warmth avoidance in Drosophila. Nature 500, 580-584.   DOI
23 Ni, L., Klein, M., Svec, K.V., Budelli, G., Chang, E.C., Ferrer, A.J., Benton, R., Samueal, A.D.T., Garrity, P.A., 2016. The ionotropic receptors IR21a and IR25a mediate cool sensing in Drosophila. Elife 5, e13254.   DOI
24 Park, Y., Kim, Y., 2013. RNA interference of glycerol biosynthesis suppresses rapid cold hardening of the beet armyworm, Spodoptera exigua. J. Exp. Biol. 216, 4196-4203.   DOI
25 Park, Y., Kim, K., Kim, Y., 2014. Rapid cold hardening of Thrips palmi (Thysanoptera: Thripidae). Environ. Entomol. 43, 1076-1083.   DOI
26 SAS Institute, Inc., 1989. SAS/STAT User's Guide. SAS Institute, Inc., Cary, NC.
27 Sinclair, B.J., 2015. Linking energetics and overwintering in temperate insects. J. Therm. Biol. 54, 5-11.   DOI
28 Teets, N.M., Yi, S.X., Lee, R.E. Jr., Denlinger, D.L., 2013. Calcium signaling mediates cold sensing in insect tissues. Proc. Natl. Acad. Sci. USA 110, 9154-9159.   DOI
29 Storey, K.B., 1997. Organic solutes in freezing tolerance. Comp. Biochem. Physiol. 117A, 319-326.   DOI
30 Storey, K.B., Storey, J.M., 2013. Molecular biology of freezing tolerance. Comp. Physiol. 3, 1283-1308.   DOI
31 Teets, N.M., Gantz, J.D., Kawarasaki, Y., 2020. Rapid cold hardening: ecological relevance, physiological mechanisms and new perspectives. J. Exp. Biol. 223, jeb203448.   DOI
32 Teets, N.M., Denlinger, D.L., 2014. Surviving in a frozen desert: environmental stress physiology of terrestrial Antarctic arthropods. J. Exp. Biol. 217, 84-93.   DOI
33 Toxopeus, J., Sinclair, B.J., 2018. Mechanisms underlying insect freeze tolerance. Biol. Rev. Camb. Philos. Soc. 93, 1891-1914.   DOI
34 Tsumuki, H., Ishida, H., Yoshida, H., Sonoda, S., Izumi, Y., Murai, T., 2007. Cold hardiness of adult western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Appl. Entomo. Zool. 42, 223-229.   DOI
35 White, T.J., Bruns, T., Lee, S., Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, in: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (Eds), PCR protocols. A guide to methods and applications. Academic Press, SanDiego, CA, USA, pp. 315-322.
36 Yi, S.X., Lee, R.E. Jr., 2003. Detecting freeze injury and seasonal cold-hardening of cells and tissues in the gall fly larvae, Eurosta solidaginis (Diptera: Tephritidae) using fluorescent vital dyes. J. Insect Physiol. 49, 999-1004.   DOI
37 Zachariassen, K.E., Kristiansen, E., 2000. Ice nucleation and antinucleation in nature. Cryobiology 41, 257-279.   DOI
38 Zhang, B., Qian, W., Qiao, X., Xi, Y., Wan, F., 2019. Invasion biology, ecology, and management of Frankliniella occidentalis in China. Arch. Insect Biochem. Physiol. 102, e21613.   DOI