Browse > Article
http://dx.doi.org/10.5656/KSAE.2021.11.0.046

Natural Enemies of the Asian Gypsy Moth, Lymantria dispar asiatica (Lepidoptera: Erebidae) and the Genetic Variation Analysis of L. dispar Multiple Nucleopolyhedrovirus  

Hwang, Hwal-Su (College of Agriculture and Life sciences, Kyungpook National University)
Lee, Young Su (Gyeonggi Agricultural Research and Extension Services)
Lee, Hee A (Gyeonggi Agricultural Research and Extension Services)
Choi, Duck Soo (Jeonnam Agricultural Research and Extension Services)
Lee, Kyeong-Yeoll (College of Agriculture and Life sciences, Kyungpook National University)
Publication Information
Korean journal of applied entomology / v.60, no.4, 2021 , pp. 379-386 More about this Journal
Abstract
Asian gypsy moth, Lymantria dispar asiatica (Lepidoptera: Erebidae), which is an indigenous pest in Korea, a large outbreak has been reported in Gyeonggi-do, Chungcheong-do, and northern Gyeongsangbuk-do from 2019 in forest and nearby downtown areas, causing emotional damage to forests and city dwellers. During the indoor culture of gypsy moth eggs collected in Yecheon, Gyeongbuk in 2021 we found that 79.65% (321/403 of first instar larvae) were died due to Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) infection. Sequence analyses of 36 gypsy moths collected from 12 regions in Korea using LdMNPV late expression factor-8 (lef-8) and polyhedrin (polh) genes showed a genetic variation of 0.80% and 0.86%, respectively. Comparison to GenBank data showed that the Korean samples were most similar to LdMNPV in Japan, whereas most different to those of Turkey. These results showed a high infection rate of LdMNPV in Korea and LdMNPV is one of the important population regulators of the gypsy moth.
Keywords
Gypsy moth; Natural enemy; Biopesticide; Nuclearpolyhedrovirus; Insect outbreak;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Liebhold, A.M., Leonard, D., Marra, J.L., Pfister, S.E., 2021. Area-wide management of invading gypsy moth (Lymantria dispar) populations in the USA. in: Hendrichs, J., Pereira, R., Vreysen, M.J.B. (Eds.), Area-wide integrated pest management. CRC Press, New York, pp. 551-560. doi:10.1201/9781003169239-29.
2 Limbu, S., Keena, M., Chen, F., Cook, G., Nadel, H., Hoover, K., 2017. Effects of temperature on development of Lymantria dispar asiatica and Lymantria dispar japonica (Lepidoptera: Erebidae). Environ. Entomol. 46, 1012-1023. doi:10.1093/EE/NVX111.   DOI
3 Lyu, D., 2015. Temperature-dependant development of Asian gypsy moth (Lymantria dispar Linn.). J. Agric. Life Sci. 49, 75-80.   DOI
4 Mannu, R., Cocco, A., Luciano, P., Lentini, A., 2020. Influence of Bacillus thuringiensis application timing on population dynamics of gypsy moth in Mediterranean cork oak forests. Pest Manag. Sci. 76, 1103-1111. doi:10.1002/ps.5622.   DOI
5 Mcmanus, M., Csoka, G., 2007. History and impact of gypsy moth in North America and comparison to recent outbreaks in Europe. Acta Silv. Lign. Hung. 3, 47-64.
6 Pogue, M.G., Schaefer, P.W., 2007. A Review of Selected Species of Lymantria Hubner [1819] Including Three New Species (Lepidoptera: Noctuidae: Lymantriinae). Department of Agriculture Forest Health Technology Enterprise Team, Washington, DC, US.
7 Schintlmeister, A., 2004. The taxonomy of the genus Lymantria Hubner, [1819] (Lepidoptera: Lymantriidae). Quadrifina, 7, 1-248.
8 Shim, H.J., Roh, J.Y., Choi, J.Y., Li, M.S., Woo S.D., Oh, H.W., Boo, K.S., Je, Y.H., 2003. Isolation and characterization of a Lymantria disapar multinucleocapsid nucleopolyhedrovirus isolate in Korea. J. Microbiol. 41, 306-311.
9 Ahmad, J.N., Mushtaq, R., Ahmad, S.J.N., Maqsood, S., Ahuja, I., Bones, A.M., 2018. Molecular identification and pathological characteristics of NPV isolated from Spodoptera litura (Fabricius) in Pakistan. Pak. J. Zool. 50, 2229-2237. doi:10.17582/JOURNAL.PJZ/2018.50.6.2229.2237   DOI
10 Harrison, R.L., Rowley, D.L., Keena, M.A., 2016. Geographic isolates of Lymantria dispar multiple nucleopolyhedrovirus: Genome sequence analysis and pathogenicity against European and Asian gypsy moth strains. J. Invertebr. Pathol. 137, 10-22. doi:10.1016/J.JIP.2016.03.014.   DOI
11 Blackburn, L.M., Hajek, A.E., 2018. Gypsy moth larval necropsy guide. Gen. Tech. Rep. NRS-179. Newtown Square, Department of Agriculture, Forest Service, Northern Research Station. 30, PA, U.S.. doi:10.2737/NRS-GTR-179.
12 Koh, S., 2014. The status of major outbreaks of forest pests in 2013. Tree Health, 19, 45-50.
13 Lee, J.H., Robert W.P., 2009. Parasitoid complex of the gypsy moth (Lymantria dispar) in the increase-phase populations in Korea. J. Ecol. Environ. 32, 75-81. doi:10.5141/JEFB.2009.32.2.075.   DOI
14 Cheng, X.W., Aguda, R.M. and Shepard, B.M., 1990. A nuclear polyhedrosis virus from the rice skipper. Int. Rice Res. Inst. Newsl. 15, 33-34.
15 Crossman, S.S., 1925. Two imported egg parasites of the gypsy moth, Anastatus bifasciatus Fonsc. and Schedius kuvanae Howard. J. Agric. Res. 30, 643-675.
16 Felsenstein, J., 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783-791.   DOI
17 Jung, J.K., Nam, Y., Kim, D., Lee, S.H., Lim, J.H., Choi, W.I., Kim, E.S., 2020. Tree-crown defoliation caused by outbreak of forest insect pests in Korea during 2020. Korean J. Appl. Entomol. 59, 409-410.   DOI
18 Crossman, S.S., 1917. Some methods of colonizing imported parasites and determining their increase and spread. J. Econ. Entomol. 10, 177-183.   DOI
19 Bandelt, H.J., Forster, P., Rohl, A., 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37-48.   DOI
20 Choi, W.I., Kim, E.S., Yun, S.J., Lim, J.H., Kim, Y.E., 2021. Quantification of one-year gypsy moth defoliation extent in Wonju, Korea, Using Landsat Satellite Images. For. 12, 545
21 Cunningham, J.C., Kaupp, W.J., 1995. Insect viruses. In forest pest insects in Canada. Edited by J.A. Armstrong and W.G.H. Ives. Natural Resources Canada, Ottawa, Ontario. 327-340.
22 Keena, M.A., Wallner, W.E., Grinberg, P.S., Carde, R.T., 2001. Female flight propensity and capability in Lymantria dispar (Lepidoptera: Lymantriidae) from Russia, North America, and their reciprocal F1 hybrids. Environ. Entomol. 30, 380-387. doi:10.1603/0046-225X-30.2.380.   DOI
23 Elkinton, J.S., Bittner, T.D., Pasquarella, V.J., Boettner, G.H., Liebhold, A.M., Gould, J.R., Faubert, H., Tewksbury, L., Broadley, H.J., Havill, N.P., Hajek, A.E., Ross, D., 2019. Relating aerial deposition of Entomophaga maimaiga conidia (Zoopagomycota: Entomophthorales) to mortality of gypsy moth (Lepidoptera: Erebidae) larvae and nearby defoliation. Environ. Entomol. 48, 1214-1222. doi:10.1093/ee/nvz091.   DOI
24 Gencer, D., Bayramoglu, Z., Nalcacioglu, R., Kleespies, R.G., Demirbag, Z., Demir, I., 2018. Characterisation of three alpha-baculovirus isolates from the gypsy moth, Lymantria dispar dispar (Lepidoptera: Erebidae), in Turkey. Biocontr. Sci. Technol. 28, 107-121.   DOI
25 Kang, T.H., Han, S.H., Lee, H.S., 2017. Genetic structure and demographic history of Lymantria dispar (Linnaeus, 1758) (Lepidoptera: Erebidae) in its area of origin and adjacent areas. Ecol. Evol. 7, 9162-9178. doi:10.1002/ECE3.3467.   DOI
26 Myers, J.H., Malakar, R., Cory, J.S., 2000. Sublethal nucleopolyhedrovirus infection effects on female pupal weight, egg mass size, and vertical transmission in gypsy moth (Lepidoptera: Lymantriidae). Environ. Entomol. 29, 1268-1272. doi:10.1603/0046-225X-29.6.1268   DOI