Browse > Article
http://dx.doi.org/10.5656/KSAE.2020.02.0.009

Control efficacy of BtPlus against two mosquitoes, Aedes koreicus and Culex vagans  

Kim, Yonggyun (Department of Plant Medicals, College of Life Sciences, Andong National University)
Minoo, Sajjadian (Department of Plant Medicals, College of Life Sciences, Andong National University)
Ahmed, Shabbir (Department of Plant Medicals, College of Life Sciences, Andong National University)
Publication Information
Korean journal of applied entomology / v.59, no.1, 2020 , pp. 41-54 More about this Journal
Abstract
Two mosquito species were collected in still-water near farming area in Andong, Korea. Based on morphological characters, these two mosquitoes were identified as Aedes koreicus and Culex vagans, respectively. DNA barcode analyses supported the identification. An entomopathogenic bacterium, Bacillus thuringiensis subsp. israelensis (BtI), exhibited insecticidal activities against the two mosquito species and its virulence was more potent than that of B. thuringiensis subsp. kurstaki. It has been known that the bacterial metabolites of Xenorhabdus spp. suppress insect immunity and enhance pathogenicity of B. thuringiensis. This study tested the effect of the bacterial culture broth of Xenorhabdus spp. on enhancing BtI pathogenicity. Among three Xenorhabdus spp., culture broth of X. ehlersii (Xe) was relatively effective to enhance BtI pathogenicity against both mosquito species. Indeed, organic extracts of Xe culture broth suppressed the hemocyte-spreading behavior, suggesting the presence of immunosuppressant in the culture broth. These results suggest a formulation of BtPlus by mixing BtI spore and Xe culture broth to be applied to control the two mosquito species.
Keywords
Aedes koreicus; Culex vagans; Bacillus thuringiensis; immunity; biopesticide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahmed, S., Kim, Y., 2019. $PGE_2$ mediates cytoskeletal rearrangement of hemocytes via Cdc42, a small G protein, to activate actin remodeling factors in Spodoptera exigua (Lepidoptera: Noctuidae). Arch. Insect Biochem. Physiol. e21607, 1-17.
2 Ahn, Y., 2011. Evaluation of insecticide resistance of vector mosquitoes. Seoul National University, Seoul, Korea.
3 Apte-Deshpande, A., Paingankar, M., Gokhale, M.D., Deobagkar, D.N., 2012. Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to dengue-2 virus. PLoS One 7, e40401.   DOI
4 Blandin, S., Shiao, S.-H., Moita, L.F., Janse, C.J., Waters, A.P., Kafatos, F.C., Levashina, E.A., 2004. Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 116, 661-670   DOI
5 Brown, L.D., Shapiro, L.L.M., Thompson, G.A., Estevez-Lao, T.Y., Hillyer, J.F., 2019. Transstadial immune activation in a mosquito: adults that emerge from infected larvae have stronger antibacterial activity in their hemocoel yet increased susceptibility to malaria infection. Ecol. Evol. 9, 6082-6095.   DOI
6 Choi, S.Y., Oh, S.C., Cho, M.S., Paek, S.K., Kim, J.S., Kim, D.A., Gill, M.R., Youn, Y.N., Yu, Y.M., 2007. Bioassay of environment-friendly insecticides for management of mosquito, Culex pipiens molestus. Korean J. Appl. Entomol. 46, 261-267.   DOI
7 Ciocchetta, S., Prow, N.A., Darbro, J.M., Frentiu, F.D., Savino, S., Montarsi, F., Capelli, G., Aaskov, J.G., Devine, G.J., 2018. The new European invader Aedes (Finlaya) koreicus: a potential vector of chikungunya virus. Pathog. Glob. Health 112, 107-114.   DOI
8 Dong, S., Kantor, A.M., Lin, J., Passarelli, A.L., Clem, R.J., Franz, A.W.E., 2016. Infection pattern and transmission potential of chikungunya virus in two New World laboratory-adapted Aedes aegypti strains. Sci. Rep. 6, 24729.   DOI
9 Eom, S., Park, Y., Kim, H., Kim, Y., 2014. Development of a high efficient dual Bt-Plus insecticide using a primary form of an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. Biotechnol. 24, 507-521.   DOI
10 Harbach, R.E., 2007. The Culicidae (Diptera): a review of taxonomy, classification and phylogeny. Zootaxa 1668, 591-638.   DOI
11 Kang, S.H., Jang, S.A., Han, J.B., Seo, D.K., Song, C.H., Kim, M.K., Kim, Y.L., Choi, S.H., Kim, I.K., Kim, G.H., 2005. Comparative efficacy of mosquito repellents against Aedes albopictus (Diptera: Culicidae). Korean J. Appl. Entomol. 44, 243-249.
12 Jegal, S., Jun, H., Kim-Jeon, M.D., Park, S.H., Ahn, S.K., Lee, J., Gong, Y.W., Joo, K., Kwon, M.J., Roh, J.Y., Lee, W.G., Lee, W., Bahk, Y.Y., Kim, T.S., 2019. Three-year surveillance of culicine mosquitoes (Diptera: Culicidae) for flavivirus infections in Incheon Metropolitan City and Hwaseong-si of Gyeonggi-do Province, Republic of Korea. Acta Trop. 202, 105258.
13 Jeong, Y.S., Lee, D.K., 2003. Prevalence and seasonal abundance of the dominant mosquito species in a large march near coast of Ulsan. Korean J. Appl. Entomol. 42, 125-132.
14 Jung, S., Kim, Y., 2006. Synergistic effect of Xenorhabdus nematophila K1 and Bacillus thuringiensis subsp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Biol. Control 39, 201-209.   DOI
15 Kil, M.R., Kim, D.A., Paek, S.K., Kim, J.S., Choi, S.Y., Jin, D.Y., Yu, Y.N., 2008. Characterization of Bacillus thuringiensis subsp. tohokuensis CAB167 isolate against mosquito larva. Korean J. Appl. Entomol. 47, 457-465.   DOI
16 Kim, E., Kim, Y., 2014. A report on mixed occurrence of tobacco whitefly (Bemisia tabaci) biotypes B and Q in Oriental melon farms in Kyungpook province, Korea. Korean J. Appl. Entomol. 53, 465-472.   DOI
17 Kim, H.C., Lee, K.W., Richards, R.S., Schleich, S.S., Herman, W.E., Klein, T.A., 2003. Seasonal prevalence of mosquitoes collected from light traps in Korea (1999-2000). Korean J. Entomol. 33, 9-16.   DOI
18 King, J.G., Hillyer, J.F., 2012. Infection-induced interaction between the mosquito circulatory and immune systems. PLoS Pathog. 8, e1003058.   DOI
19 Kim, Y.K., Lee, C.M., Lee, J.B., Bae, S.B., 2012. Seasonal prevalence of mosquitoes and ecological characteristics of Anopheline larval occurrence in Gimpo, Gyeonggi Province, Republic of Korea. Korean J. Appl. Entomol. 51, 305-312.   DOI
20 King, J.G., 2020. Developmental and comparative perspectives on mosquito immunity. Dev. Comp. Immunol. 103, 103458.   DOI
21 Kudom, A.A., 2015. Larval ecology of Anopheles coluzzii in Cape Coast, Ghana: water quality, nature of habitat and implication for larval control. Malar. J. 14, 447.   DOI
22 Kurucz, K., Kiss, V., Zana, B., Jacab, F., Kemenesi, G., 2018. Filarial nematode (order: Spirurida) surveillance in urban habitats, in the city of Pecs (Hungary) Parasitol. Res. 117, 3355-3360.   DOI
23 Kwon, H., Arends, B.R., Smith, R.C., 2017. Late-phase immune responses limiting oocyst survival are independent of TEP1 function yet display strain specific differences in Anopheles gambiae. Parasites Vectors 10, 1-9.   DOI
24 Lima, E.P., Goulart, M.O., Rolim Neto, M.L., 2015. Meta-analysis of studies on chemical, physical and biological agents in the control of Aedes aegypti. BMC Public Health 15, 858.   DOI
25 League, G.P., Hillyer, J.F., 2016. Functional integration of the circulatory, immune, and respiratory systems in mosquito larvae: pathogen killing in the hemocyte-rich tracheal tufts. BMC Biol. 14.
26 Lee, H.I., 2003. Taxonomic review and revised keys of the Korean mosquitoes (Diptera: Culicidae). Korean J. Entomol. 33, 39-52.   DOI
27 Lee, K.W., Gupta, R.K., Wilde, J.A., 1984. Collection of adult and larval mosquitoes in U.S. army compounds in the Republic of Korea during 1979-1983. Korean J. Parasitol. 22, 102-108.   DOI
28 Kim, Y., Stanley, D., Ahmed, S., An, C., 2018. Eicosanoid-mediated immunity in insects. Dev. Comp. Immunol. 83, 130-143.   DOI
29 Luplertlop, N., Surasombatpattana, P., Patramool, S., Dumas, E., Wasinpiyamongkol, L., Saune, L., Hamel, R., Bernard, E., Sereno, D., Thomas, F., Piquemal D, Yssel H, Briant L, Misse D., 2011. Induction of a peptide with activity against a broad spectrum of pathogens in the Aedes aegypti salivary gland, following infection with dengue virus. PLoS Pathog. 7, e1001252.   DOI
30 Marini, G., Arnoldi, D., Baldacchino, F., Capelli, G., Guzzetta, G., Merler, S., Montarsi, F., Rizzoli, A., Rosa, R., 2019. First report of the influence of temperature on the bionomics and population dynamics of Aedes koreicus, a new invasive alien species in Europe. Parasit. Vectors 12, 524.   DOI
31 Moreno-Garcia, M., Vargas, V., Ramirez-Bello, I., Hernandez-Martinez, G., Lanz-Mendoza, H., 2015. Bacterial exposure at the larval stage induced sexual immune dimorphism and priming in adult Aedes aegypti mosquitoes. PLoS One 10, e0133240.   DOI
32 Miles, J.A., 1964. Some ecological aspects of the problem of arthropod-borne animal viruses in the Western Pacific and South-East Asia regions. Bull. World Health Organ. 30, 197-210.
33 Montarsi, F., Martini, S., Dal Pont, M., Delai, N., Ferro Milone, N., Mazzucato, M., Soppelsa, F., Cazzola, L., Cazzin, S., Ravagnan, S., Ciocchetta, S., Russo, F., Capelli, G., 2013. Distribution and habitat characterization of the recently introduced invasive mosquito Aedes koreicus [Hulecoeteomyia koreica], a new potential vector and pest in north-eastern Italy. Parasit. Vectors 6, 292.   DOI
34 Montarsi, F., Ciocchetta, S., Devine, G., Ravagnan, S., Mutinelli, F., Frangipane di Regalbono, A., Otranto, D., Capelli, G., 2015. Development of Dirofilaria immitis within the mosquito Aedes (Finlaya) koreicus, a new invasive species for Europe. Parasit. Vectors 8, 177.   DOI
35 SAS Institute, Inc., 1989. SAS/STAT User's Guide, release 6.03 Ed. SAS Institute, Cary, NC.
36 Pakpour, N., Camp, L., Smithers, H.M., Wang, B., Tu, Z., Nadler, S.A., Luckhart, S., 2013. Protein kinase C-dependent signaling controls the midgut epithelial barrier to malaria parasite infection in anopheline mosquitoes. PLoS One 8, e76535.   DOI
37 Park, Y., 2015. Entomopathogenic bacterium, Xenorhabdus nematophila and Photorhabdus luminescens, enhances Bacillus thuringiensis Cry4Ba toxicity against yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). J. Asia Pac. Entomol. 18, 459-463.   DOI
38 Park, Y., Kim, Y., Yi, Y., 1999. Identification and characterization of a symbiotic bacterium associated Steinernema carpocapsae in Korea. J. Asia Pac. Entomol. 2, 105-111.   DOI
39 Park, Y., Jung, J., Kim, Y., 2016. A mixture of Bacillus thuringiensis subsp. israelensis with Xenorhabdus nematophila-cultured broth enhances toxicity against mosquitoes Aedes albopictus and Culex pipiens pallens. J. Econ. Entomol. 109, 1086-1093.   DOI
40 Sadekuzzaman, M.D., Kim, Y., 2017. Specific inhibition of Xenorhabdus hominickii, an entomopathogenic bacterium, against different types of host insect phospholipase $A_2$. J. Invertebr. Pathol. 149, 97-105.   DOI
41 Seo, S., Kim, Y., 2011. Development of "Bt-Plus" biopesticide using entomopathogenic bacteria (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) metabolites. Korean J. Appl. Entomol. 50, 171-178.   DOI
42 Seo, M.J., Gil, Y.J., Kim, T.H., Kim, H.J., Youn, Y.N., Yu, Y.M., 2010. Control effects against mosquitoes larva of Bacillus thuringiensis subsp. israelensis CAB199 isolate according to different formulations. Korean J. Appl. Entomol. 49, 151-158.   DOI
43 Whitfield, J., 2002. Portrait of a serial killer: a roundup of the history and biology of the malaria parasite. Nature https://doi.org/10.1038/news021001-6.
44 Seo, S., Lee, S., Hong, Y., Kim, Y., 2012. Phospholipase $A_2$ inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78, 3816-3823.   DOI
45 Sim, S., Ramirez, J.L., Dimopoulos, G., 2012. Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior. PLoS Pathog. 8, e1002631.   DOI
46 Stanley, D., Kim Y. 2019. Prostaglandins and other eicosanoids in insects: biosynthesis and biological actions. Front. Physiol. 9, 1927.   DOI
47 Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis, version 6.0. Mol. Biol. Evol. 30, 2725-2729.   DOI
48 Wang, Z.Q., Perumaisamy, H., Wang, M., Shu, S., Ahn, Y.J., 2016. Larvicidal activity of Magnolia denudata seed hydrodistillate constituents and related compounds and liquid formulations towards two susceptible and two wild mosquito species. Pest Manag. Sci. 72, 897-906.   DOI
49 Yeom, Y.S., 2017. Current status and outlook of mosquito-borne diseases in Korea. J. Korean Med. Assoc. 60, 468-474.   DOI
50 Yu, H.S., Kim, H.C., 1989. Integrated control of vector mosquitoes with native fishes (Aplocheilus and Aphyocypris) and Bacillus thuringiensis (H-14) in natural rice fields of Korea. Korean J. Appl. Entomol. 28, 167-174.