Browse > Article
http://dx.doi.org/10.5656/KSAE.2018.11.0.054

A Loop-mediated Isothermal Amplification Method for White-backed Planthopper-specific Detection  

Seo, Bo Yoon (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration)
Park, Chang Gyu (Department of Industrial Entomology, Korea National College of Agriculture and Fisheries)
Jung, Jin Kyo (Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration)
Cho, Jumrae (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Gwan-Seok (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, Kwang-Ho (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration)
Publication Information
Korean journal of applied entomology / v.57, no.4, 2018 , pp. 393-399 More about this Journal
Abstract
A loop-mediated isothermal amplification (LAMP) primer set (WBPH-65) was designed for the species-specific detection of white-backed planthopper (WBPH) Sogatella furcifera based on the full-length sequence of the internal transcribed spacer 2 (ITS2) (KC417469.1). The WBPH-65 primer set consists of six primers (total 165 bp), F3 (18 bp), B3 (18 bp), FIP (43 bp), BIP (40 bp), LF (21 bp), and LB (25 bp). After the LAMP reaction of three rice planthoppers, S. furcifera, Nilaparvata lugens, and Laodelphax striatellus, with the WBPH-65 primer set for 60 min at $65^{\circ}C$, the LAMP products were observed in the genomic DNA of S. furcifera only. According to the DNA amount of S. furcifera and incubation duration at $65^{\circ}C$, the difference of fluorescence relative to the negative control (0 ng) was clearly observed in a 40-min incubation with 10 and 100 ng or in case of 60-min incubation with 0.01, 0.1, 1, 10, and 100 ng. There was little difference in fluorescence between the negative control and all the other DNAs tested in 20- and 30-min incubations. On the other hand, the WBPH-65 primer set without LF and LB primers showed little amplification in the genomic DNAs of the three rice planthoppers, S. furcifera, N. lugens, and L. striatellus in a 60-min incubation. These results suggest that all six primers (F3, B3, FIP, BIP, LF, and BF) are necessary for the WBPH-65 primer set to detect S. furcifera within a 60-min incubation, and is able to discriminate S. furcifera from at least N. lugens and L. striatellus.
Keywords
Sogatella furcifera; ITS2; Primer; LAMP; Species-specific detection;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kim, H.Y., Park, C.G., Han, M.W., Uhm, K.B., Woo, K.S., 2002. Development of a hypertext-based polychotomous key for the identification of planthoppers caught by light trap in paddy fields. Korean J. Appl. Entomol. 41, 75-83.
2 Kim, Y.H., Hur, J.H., Lee, G.S., Choi, M-.Y., Koh, Y.H., 2016. Rapid and highly accurate detection of Drosophila suzukii, spotted wing Drosophila (Diptera: Drosophilidae) by loop-mediated isothermal amplification assays. J. Asia-Pac. Entomol. 19, 1211-1216.   DOI
3 Kisimoto, R., Sogawa, K., 1995. Migration of the brown planthopper Nilaparvata lugens and the wihte-backed planthopper Sogatella furcifera in East Asia: the role of weather and climate, in: Drake, V.A., Gatehouse, A.G. (Eds.), Insect migration. Cambridge University Press, Cambridge, pp. 67-91.
4 Mori, Y., Notomi, T., 2009. Loop-mediated isothermal amplifi cation (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J. Infect. Chemother. 15, 62-69.   DOI
5 Nagamine, K., Hase, T., Notomi, T., 2002. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 16, 223-229.   DOI
6 Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., Hase, T., 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 28, e63.   DOI
7 RDA, 2009. Guidebook for the pest management of major agricultural crops (in Korean), Rural Development Administration, Suwon.
8 Wilson, M.R., Claridge, M.F., 1991. Handbook for the identification of leafhoppers and planthoppers of rice. CAB International, Wallingford, UK.
9 Zhang, X., Lowe, S.B., Gooding, J.J., 2014. Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens. Bioelectron. 61, 491-499.   DOI
10 Otuka, A., 2013. Migration of rice planthoppers and their vectored re-emerging and novel rice viruses in East Asia. Front. Microbiol. 4, 309. Doi:10.3389/fmicb.2013.00309.   DOI
11 RDA, 2014. Guidebook for monitoring and control of agricultural crop pests in 2013 (in Korean), Rural Development Administration, Suwon.
12 Seo, B.Y., Park, C.G., Koh, Y-.H., Jung, J.K., Cho, J., Kang, C., 2017. ITS2 DNA sequence analysis for eight species of delphacid planthoppers and a loop-mediated isothermal amplification method for the brown planthopper-specific detection. Korean J. Appl. Entomol. 56, 377-385.
13 Uhm, K.B., Park, J.S., Lee, Y.I., Choi, K.M., Lee, M.H., Lee, J.O., 1988. Relationship between some weather conditions and immigration of the brown planthopper, Nilaparvata lugens Stal. Korean J. Appl. Entomol. 27, 200-210.
14 Huang, C-.G., Hsu, J-.C., Haymer, D.S., Lin, G-.C., Wu, W-.J., 2009. Rapid identification of the mediterranean fruit fly (Diptera: Tephritidae) by loop-mediated isothermal amplification. J. Econ. Entomol. 102, 1239-1246.   DOI
15 Zhou, G., Xu, D., Xu, D., Zhang, M., 2013. Southern rice blackstreaked dwarf virus: a white-backed planthopper-transmitted fijivirus threatening rice production in Asia. Front. Microbiol. 9, 270. Doi:10.3389/fmicb.2013.00270.   DOI
16 Asche, M., Wilson, M.R., 1990. The delphacid genus Sogatella and related groups: a revision with special reference to rice-associated species (Homoptera: Fulgoroidea). Syst. Entomol. 15, 1-42.
17 Blaser, S., Diem, H., von Felten, A., Gueuning, M., Andreou, M., Boonham, N., Tomlinson, J., Muller, P., Utzinger, J., Freya, J.E., Buhlmanni, A., 2018. From laboratory to point of entry: development and implementation of a loop-mediated isothermal amplification (LAMP)-based genetic identification system to prevent introduction of quarantine insect species. Pest Manag. Sci. 74, 1504-1512.   DOI
18 Choi, B.H., Hur, J.H., Heckel, D.G., Kim, J., Koh, Y.H., 2018. Development of a highly accurate and sensitive diagnostic tool for pyrethroid-resistant chimeric P450 CYP337B3 of Helicoverpa armigera using loop-mediated isothermal amplification. Arch. Insect Biochem. Physiol. 99, e21504.   DOI
19 Fekrat, L., Zaki Aghl, M., Tahan, V., 2015. Application of the LAMP assay as a diagnostic technique for rapid identification of Thrips tabaci (Thysanoptera: Thripidae). J. Econ. Entomol. 108, 1337-1343.   DOI