Browse > Article
http://dx.doi.org/10.5656/KSAE.2018.01.1.056

Prediction of Changes in Habitat Distribution of the Alfalfa Weevil (Hypera postica) Using RCP Climate Change Scenarios  

Kim, Mi-Jeong (Division of Ecological Conservation, Bureau of Ecological Research, National Institute of Ecology)
Lee, Heejo (Division of Ecological Conservation, Bureau of Ecological Research, National Institute of Ecology)
Ban, Yeong-Gyu (Division of Ecological Conservation, Bureau of Ecological Research, National Institute of Ecology)
Lee, Soo-Dong (Department of Landscape Architecture, Gyeongnam National University of Science and Technology)
Kim, Dong Eon (Division of Ecological Conservation, Bureau of Ecological Research, National Institute of Ecology)
Publication Information
Korean journal of applied entomology / v.57, no.3, 2018 , pp. 127-135 More about this Journal
Abstract
Climate change can affect variables related to the life cycle of insects, including growth, development, survival, reproduction and distribution. As it encourages alien insects to rapidly spread and settle, climate change is regarded as one of the direct causes of decreased biodiversity because it disturbed ecosystems and reduces the population of native species. Hypera postica caused a great deal of damage in the southern provinces of Korea after it was first identified on Jeju lsland in the 1990s. In recent years, the number of individuals moving to estivation sites has concerned scientists due to the crop damage and national proliferation. In this study, we examine how climate change could affect inhabitation of H. postica. The MaxEnt model was applied to estimate potential distributions of H. postica using future climate change scenarios, namely, representative concentration pathway (RCP) 4.5 and RCP 8.5. As variables of the model, this study used six bio-climates (bio3, bio6, bio10, bio12, bio14, and bio16) in consideration of the ecological characteristics of 66 areas where inhabitation of H. postica was confirmed from 2015 to 2017, and in consideration of the interrelation between prediction variables. The fitness of the model was measured at a considered potentially useful level of 0.765 on average, and the warmest quarter has a high contribution rate of 60-70%. Prediction models (RCP 4.5 and RCP 8.5) results for the year 2050 and 2070 indicated that H. postica habitats are projected to expand across the Korean peninsula due to increasing temperatures.
Keywords
Alien species; Potential habitat; Climate change; RCPs scenarios; MaxEnt;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Fleming, R.A., Candau, J.N., 1998. Influences of climatic change on some ecological processes of an insect outbreak system in Canada's boreal forests and the implications for biodiversity. Environ. Monit. Assess. 49(2), 235-249.   DOI
2 Kwon, T.S., Lee, C.M., Kim, S.S., 2014. Northward range shifts in Korean butterflies. Clim. Chang. 126(1-2), 163-174.   DOI
3 Franklin, J., 2009. Mapping species distributions: spatial inference and prediction. Cambridge University Press.
4 Gallien, L., Douzet, R., Pratte, S., Zimmermann, N.E., Thuiller, W., 2012. Invasive species distribution models-how violating the equilibrium assumption can create new insights. Glob. Ecol. Biogeogr. 21(11), 1126-1136.   DOI
5 Baba, K., 1983. The discovery of the alfalfa weevil, Hypera postica G. in Japan. Plant Prot. Kyushu (in Japanese) 12(2), 151-160.
6 Zahiri, B., Fathipour, Y., Khanjani, M., Moharramipour, S., Zalucki, M.P., 2010. Preimaginal development response to constant temperatures in Hypera postica (Coleoptera: Curculionidae) picking the best model. Environ. Entomol. 39, 177-178.   DOI
7 Akcakaya, H.R., McCarthy, M.A., Pearce, J.L., 1995. Linking landscape data with population viability analysis: management options for the helmeted honeyeater Lichenostomus melanops cassidix. Biol. Conserv. 73(2), 169-176.   DOI
8 Bae, S., Mainali, B.P., Choi, B., Yoon, Y., Kim, H., 2014. Control efficacy of environment-friendly agricultural materials against alfalfa weevil, Hypera postica Gyllenhal at Chinese milk vetch field. Korean J. Pestic. Sci. 18(1), 26-32.   DOI
9 Bang, S.W., Kim, M.H., Noh, T.H., 2004. Development of integrated management plan for abating the threats from invasive alien species in Korea. Korea Environment Institute RE-02, 325 pp.
10 Bale, J.S., 2002. Insects and low temperatures: from molecular biology to distributions and abundance. Philos. Trans. R. Soc. London B: Biol. Sci. 357(1423), 849-862.   DOI
11 Carey, J.R., 1993. Applied demography for biologists: with special emphasis on insects Oxford University Press, New York.
12 Cothran, W.R., Summers, C.G., 1972. Sampling for the Egyptian alfalfa weevil: A comment on the sweep-net method 1 2. J. Econ. Entomol. 65(3), 689-691.   DOI
13 Miller, C.D.F., Mukerji, M.K., Guppy, J.C., 1972. Notes on the spatial pattern of Hypera postica (Coleoptera: Curculionidae) on alfalfa. Can. Entomol. 104(12), 1995-1999.   DOI
14 Lee, H.S., Kwon, J.H., Chung, B.K., Kim, T.S., 2012. Scouting methods for larva and adult alfalfa weevil, Hypera postica (Coleoptera: Curculionidae) on Chinese milkvetch, Astragalus sinicus L. Korean J. Appl. Entomol. 51(1), 67-72.   DOI
15 Merow, C., Smith, M.J., Silander, J.A., 2013. A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography 36(10), 1058-1069.   DOI
16 Metcalf, R.L., Luckman, W.H., 1994. Introduction to insect pest management. A Wiley-Interscience Publication, Wiley, New York.
17 Morimoto, K., 1987. Establishment of the alfalfa weevil in Japan. Honeybee Sci. 5, 257-259.
18 Pearce, J., Lindenmayer, D., 1998. Bioclimatic analysis to enhance reintroduction biology of the endangered helmeted honeyeater (Lichenostomus melanops cassidix) in southeastern Australia. Restor. Ecol. 6(3), 238-243.   DOI
19 Nix, H.A., 1986. A biogeographic analysis of Australian elapid snakes, in: Longmore, R. (Ed.), Atlas of elapid snakes of Australia. Australian Flora and Fauna Series No. 7, Australian Government Publishing Service, Canberra, pp. 4-15.
20 Park, S.U., Koo, K.A., Kong, W.S., 2016. Potential impact of climate change on distribution of warm temperate evergreen broad-leaved trees in the Korean peninsula. J. Korean Geogr. Soc. 51(2), 201-217.
21 Peterson, A.T., Soberon, J., Pearson, R.G., Anderson, R.P., Martinez-Meyer, E., Nakamura, M., Araujo, M.B., 2011. Ecological niches and geographic distributions. Princeton University Press, Princeton and Oxford.
22 Thuiller, W., 2003. BIOMOD-optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Chang. Biol. 9(10), 1353-1362.   DOI
23 Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3), 231-259.   DOI
24 Rushton, S.P., Ormerod, S.J., Kerby, G., 2004. New paradigms for modelling species distributions?. J. Appl. Ecol. 41(2), 193-200.   DOI
25 Secretariat of the Convention on Biological Diversity, 2010. Global biodiversity outlook 3. Montreal, Canada, pp. 12-48.
26 Seo, C.W., Park, Y.R., Choi, Y.S., 2008. Comparison of species distribution models according to location data. J. Korean Soc. Geospatial Inf. Syst. 16(4), 59-64.
27 Sutherst, R.W., 2000. Climate change and invasive species: a conceptual framework. Invasive Species in a Changing World, pp. 211-240.
28 Hanley, J.A., McNeil, B.J., 1983. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiol. 148(3), 839-843.   DOI
29 Guisan, A., Graham, C.H., Elith, J., Huettmann, F., 2007a. Sensitivity of predictive species distribution models to change in grain size. Divers. Distrib. 13(3), 332-340.   DOI
30 Guisan, A., Zimmermann, N.E., Elith, J., Graham, C.H., Phillips, S., Peterson, A.T., 2007b. What matters for predicting the occurrences of trees: techniques, data or species' characteristics Ecol. Monogr. 77(4), 615-630.   DOI
31 Keith, D.A., Elith, J., Simpson, C.C., 2014. Predicting distribution changes of a mire ecosystem under future climates. Divers. Distrib. 20(4), 440-454.   DOI
32 Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25(15), 1965-1978. http://www.worldclim.org   DOI
33 Hill, M.P., Bertelsmeier, C., Clusella-Trullas, S., Garnas, J., Robertson, M.P., Terblanche, J.S., 2016. Predicted decrease in global climate suitability masks regional complexity of invasive fruit fly species response to climate change. Biol. Invasions 18(4), 1105-1119.   DOI
34 Hong, K.J., Kim, J.Y., 2002. Detected pest of curculionoidea from plant quarantiner ('00-'01). Proc. Kor. Soc. Appl. Entomol. Conf., 58 pp.
35 Kim, D.H., Kim, K.S., Lee, S.C., Hyun, J.U., Lim, H.C., 2003. Survey of introduced exotic pest in Jeju island. Rep. Res. Exp. RDA, pp. 411-417.
36 Kumar, S., Stohlgren, T.J., 2009. MaxEnt modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J. Ecol. Nat. Environ. 1(4), 94-98.
37 Enkegaard, A., 1993. The poinsettia strain of the cotton whitefly, Bemisia tabaci (Homoptera; Aleyrodidae), biological and demographic parameters on poinsettia (Euphorbia pulcherrima) in relation to temperature. Bull. Entomol. Res. 83, 535-546.   DOI
38 Crossman, N.D., Bryan, B.A., Cooke, D.A., 2011. An invasive plant and climate change threat index for weed risk management: Integrating habitat distribution pattern and dispersal process. Ecol. Indic. 11(1), 183-198.   DOI
39 Dowling, C.R., 2015. Using MaxEnt modeling to predict habitat of mountain pine beetle in response to climate change. Ph.D. Thesis, University of Southern California.
40 Elith, J., Kearney, M., Phillips, S., 2010. The art of modelling range-shifting species. Methods Ecol. Evol. 1(4), 330-342.   DOI
41 Ferrier, S., Drielsma, M., Manion, G., Watson, G., 2002a. Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. II. Community-level modelling. Biodiversity Conserv. 11(12), 2309-2338.   DOI
42 Ferrier, S., Watson, G., Pearce, J., Drielsma, M., 2002b. Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modelling. Biodiversity Conserv. 11(12), 2275-2307.   DOI