Browse > Article
http://dx.doi.org/10.5656/KSAE.2016.07.1.075

Optimal Duration of Determining the Insecticidal Effect of Carbofuran on Nilaparvata lugens Using Different Application Methods  

Lee, Siwoo (National Institute of Crop Science)
Jung, Jin Kyo (National Institute of Crop Science)
Seo, Bo Yoon (National Academy of Agricultural Science)
Park, Chang-Gyu (National Academy of Agricultural Science)
Publication Information
Korean journal of applied entomology / v.56, no.4, 2017 , pp. 351-356 More about this Journal
Abstract
For determining the insecticidal effect of Carbofuran on the Brown planthopper, Nilaparvata lugens, sucking toxicity by drenching application, sucking and contact toxicity by leaf dipping application, and contact toxicity by topical application were examined. Drenching caused two types of mortality patterns. One was logarithmic curve at a relatively high concentration (8~30 ppm) with over 40% mortality in 24 h, and the other was an S-shaped curve at low concentrations (1~4 ppm) with over 60% mortality on the fifth day after Carbofuran treatment. Leaf dipping application caused a rapid increase in mortality in a day, and this effect decreased steadily with time. Topical application showed steep increase in mortality in a day, and hardly increased thereafter. The best mortality evaluation time for the drenching application was the second day (42 h), and that for the leaf dipping and topical applications was the first or second day after Carbofuran application. When the insecticide has systemic effects, drench application provides the best efficacy and its insecticidal effects persist for a longer time than any other application method.
Keywords
Carbofuran; Brown planthopper; Toxicity; Determination Time; Mortality;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Korea Crop Protection Association (KCPA), 2014a. Agrochemical Year Book 2014. Seoul.
2 Korea Crop Protection Association (KCPA). 2014b. Agrochemicals Use Guide Book 2014. Seoul.
3 Korea Evaluation Institute of Industrial Tecahnology (KEIT), 2015. For global marketing of eco-friendly crop protection agents by new materials. KEIT PD Issue Report. November. 15-11, 45-56.
4 Liu, G.Y., Miao, W., Ju, X.L., 2010. Mechanisms of Imidacloprid resistance in Nilaparvata lugens by molecular modeling. Chin. Chem. Lett. 21, 492-495.   DOI
5 Liu, Z., Williamson, M.S., Lansdell, S.J., Denholm, I., Han, Z., Millar, N.S., 2005. A nicotinic acetylcholine receptor mutation conferring target-site resistance to Imidacloprid in Nilaparvata lugens (Brown planthopper). Proc. Natl. Acad. Sci. USA 102, 8420-8425.   DOI
6 Nauen, R., Elbert, A., 1997. Apparent tolerance of a field-collected strain of Myzus nicotianae to Imidacloprid due to strong antifeeding response. Pestic. Sci. 49, 252-258.   DOI
7 Nauen, R., Koob, B., Elbert, A., 1998. Antifeedant effects of sublethal dosages of Imidacloprid on Bemisia tabaci. Entomol. Exp. Appl. 88, 287-293.   DOI
8 Nelson, L. R., Morrill, W.L., 1975. Hessian fly control in wheat with systemic insecticides. Cereal Res. Commun. 3, 7-14.
9 Pham, H.H., Kim, J.K., Choi, B.R., Song, Y.H., 2008. Effects of root zone applications of some systemic lnsecticides for control of the Brown planthopper, Nilaparvata lugens (Stal). Korean J. Pestic. Sci. 12, 236-242.
10 Podolska, M., Mulkiewicz, E., Napierska, D., 2008. The impact of Carbofuran on acetylcholinesterase activity in Anisakis simplex larvae from Baltic herring. Pestic. Biochem. Physiol. 91, 104-109.   DOI
11 Risher, J.F., Mink, F.L., Stara, J.F., 1987. The toxicologic effects of the carbamate insecticide Aldicarb in mammals: A Rev. Environ. Health Perspect. 72, 267-281.   DOI
12 Salman, J.M., 2013. Batch study for insecticide Carbofuran adsorption onto palm-oil-fronds-activated carbon. J. Chem. 2013, 1-5.
13 Shim, M.J., 2015. Necessary of policy for export drive of agricultural chemicals. http://www.newsam.co.kr/news/article.html?no=7859 (accessed on 11 October, 2016).
14 Shukla, V.D., Anjaneyulu, A., 1980. Evaluation of systemic insecticides for control of rice Tungro. Plant Disease. 64, 790-792.   DOI
15 Sikora, R. A., Hartw, J., 1991. Mode-of-action of the carbamate nematicides Cloethocarb, Aldicarb and Carbofuran on Heterodera schachtii. 2. Systemic activity. Rev. Nematol. 14, 531-536.
16 Yen, J.H., Hsiao, F.L., Wang, Y.S., 1997. Assessment of the insecticide Carbofuran's potential to contaminate groundwater through soils in the subtropics. Ecotoxicol. Environ. Saf. 38, 260-265.   DOI
17 Simon-Delso N., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Chagnon, M., Downs, C., Furlan, L., Gibbons, D.W., Giorio, C., Girolami, V., Goulson, D., Kreutzweiser, D.P., Krupke, C.H., Liess, M., Long, E., McField, M., Mineau, P., Mitchell, E.A.D., Morrissey, C.A., Noome, D.A., Pisa, L., Settele, J., Stark, J.D., Tapparo, A., Van Dyck, H., Van Praagh, J., Van der Sluijs, J.P., Whitehorn, P.R., Wiemers, M., 2015. Systemic insecticides (Neonicotinoids and Fipronil): trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 22, 5-34.   DOI
18 Solheim, B.A., 1982. Toxicity and acetylcholinesterase inhibition by Carbofuran and Terbufos insecticides on Diabrotica species (Insecta: Coleoptera: Chrysomelidae), Iowa State University Ph.D., Retrospective Theses and Dissertations. Paper No. 7542.
19 Stenersen, J., 2004. Chemical pesticides mode of action and toxicology. CRC Press, Boca Raton, Florida.
20 Wise, J.C., Vandervoort, C., Isaacs, R., 2007. Lethal and sublethal activities of Imidacloprid contribute to control of adult Japanese beetle in blueberries. J. Econ. Entomol. 100, 1596-1603.   DOI
21 DiSanzo, C.P., 1981. Effect of foliar application of Carbofuran and a related compound on plant-parasitic nematodes under greenhouse and growth chamber conditions. J. Nematol. 13, 20-24.
22 Aquino, G.B., Pathak, M.D., 1976. Enhanced absorption and persistence of Carbofuran and Chlorodimeform in rice plant on root zone application under flooded conditions. J. Econ. Entomol. 69, 686-690.   DOI
23 Bae, Y.H., Hyun, J.S., 1987. Studies on the effects of systematic applications of several insecticides on the population of the Brown planthopper, Nilaparvatia lugens Stal. I. Effects of some systemic insecticides of the early population. Korean J. Plant Prot. 26, 9-12.
24 Bae, Y.H., Lee, J.H., Hyun, J.S., 1992. Effects of Carbofuran soil incorporation on the early occurring rice insect pests and the Brown planthopper. Korean J. Appl. Entomol. 31, 536-542.
25 Bao, H. B., Liu, S. H., Gu, J. H., Wang, X. Z., Liang, X. L., Liu, Z. W., 2009. Sublethal effects of four insecticides on the reproduction and wing formation of Brown planthopper, Nilaparvata lugens. Pest Manag. Sci. 65, 170-174.   DOI
26 Bautista, M.V., Bautista, A., Cruz, A.H., 1979. Soil incorporated Carbofuran for control of Rice whorl maggot and early Stem borers. Int. Rice Res. Newsl. 4(4), 15-16.
27 Chang, C., Cheng, X., Huang, X.Y., Dai, S.M., 2014. Amino acid substitutions of acetylcholinesterase associated with Carbofuran resistance in Chilo suppressalis. Pest Manag. Sci. 70, 1930-1935.   DOI
28 Davis, A.R., Shuel, R.W., 1988. Distribution of 14c-labelled Carbofuran and Dimethoate in royal jelly, queen larvae and nurse honeybees. Apidologie 19, 37-50.   DOI
29 Dosono-Lopez, J.G., Grigarick, A.A., 1969. An evaluation of Carbofuran for control of several stages of the Rice water weevil in greenhouse tests. J. Econ. Entomol. 62, 1024-1028.
30 EPA (U.S. Environmental Protection Agency), N.D. Carbofuran I.R.E.D. Facts. https://archive.epa.gov/pesticides/reregistration/web/html/Carbofuran_ired_fs.html (accessed on 5 October, 2016).
31 He, Y., Zhao, J., Zheng, Y., Weng, Q., Biondi, A., Desneux, N. Wu, K., 2013. Assessment of potential sublethal effects of various insecticides on key biological traits of the Tobacco whitefly, Bemisia tabaci. Int. J. Biol. Sci. 9, 246-255.   DOI
32 Fukuto, T.R., 1990. Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health Perspect. 87, 245-254.   DOI
33 Gupta, R.C., 1994. Carbofuran toxicity. J. Toxicol. Environ. Health 43, 383-418.   DOI
34 He, Y., Zhao, J., Wu, D., Wyckhuys, K.A.G., Wu, K., 2011. Sublethal effects of Imidacloprid on Bemisia tabaci (Hemiptera: Aleyrodidae) under laboratory conditions. J. Econ. Entomol. 104, 833-838.   DOI
35 IUPAC (International Union of Pure and Applied Chemistry), N.D. Page about Carbofuran in the IUPAC's database. http://sitem.herts.ac.uk/aeru/iupac/Reports/118.htm (accessed on 6 October, 2016).
36 Korea Crop Protection Association (KCPA), 2012. Agrochemical Year Book 2012. Seoul.
37 Jiang, W., Wang, Z., Xiong, M., Lu, W., Liu, P., Guo, W., Li, G., 2010. Insecticide resistance status of Colorado potato beetle (Coleoptera: Chrysomelidae) adults in northern Xinjiang Uygur autonomous region. J. Econ. Entomol. 103, 1365-1371.   DOI
38 Jotwani, M.G., Kishore, P., Sukhani, T.R., Srivastava, K.P., 1979. Relative efficacy of Carbofuran seed treatment and granular formulation of systemic insecticides for the control of Sorghum shootfly. Pesticides 13, 40-43.
39 Kolbezen, M.J., Metcalf, R.L. Fukuto, T.R., 1954. Insecticide structure and activity, insecticidal activity of carbamate cholinesterase inhibitors. J. Agric. Food Chem. 2, 864-870.   DOI