Browse > Article
http://dx.doi.org/10.5656/KSAE.2016.02.0.004

A Freeze-drying Formulation and Target Specificity of Double-stranded RNA-expressing Bacteria to Control Insect Pests  

Kim, Eunseong (Department of Bioresource Sciences, Andong National University)
Kim, Yonggyun (Department of Bioresource Sciences, Andong National University)
Publication Information
Korean journal of applied entomology / v.55, no.2, 2016 , pp. 81-89 More about this Journal
Abstract
Double-stranded RNA (dsRNA) has been applied to control insect pests by its suppressive activity against specific target genes. Integrin is a heterodimer (${\alpha}$ and ${\beta}$) transmembrane protein and plays a critical role in cell-to-cell or cell-to-extracellular matrix interactions in eukaryotes. Suppression of ${\beta}$ subunit integrin gene expression by its specific dsRNA (= dsINT) induces significant mortality against target insects. Furthermore, a recombinant bacterium expressing dsINT is potent to kill target insects. However, it is necessary to develop a formulation technique of the dsRNA-expressing bacteria to apply the bacterial insecticide against field populations. This study formulated the recombinant bacteria by freeze-drying and tested its control efficacy against target insects. The formulation maintained significant insecticidal activity against last instar larvae of Spodoptera exigua. While a commercial Bacillus thuringiensis (Bt) insecticide exhibited only about 60% insecticidal activity against S. exigua last instar, an addition of the dsINT-expressing bacterial formulation significantly enhanced the Bt insecticidal activity. The dsINT-expressing bacterial formulation exhibited relative selectivity to target insects depending on sequence similarity. These results indicate that a freeze-dried form of dsRNA-expressing bacteria keeps its insecticidal activity.
Keywords
dsRNA; insecticide; Spodoptera exigua; recombinant bacteria;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, Y.H., Soumaila Issa, M., Cooper, A.M., Zhu, K.Y., 2015b. RNA interference: applications and advances in insect toxicology and insect pest management. Pestic. Biochem. Physiol. 120, 109-117.   DOI
2 Lavine, M.D., Strand, M.R., 2003. Haemocytes from Pseudoplusia includens express multiple ${\alpha}$ and ${\beta}$ integrin subunits. Insect Mol. Biol. 12, 441-452.   DOI
3 Li, X., Zhang, M., Zhang, H., 2011. RNA interference of four genes in adult Bactrocera dorsalis by feeding their dsRNAs. PLoS One 6, e17788.   DOI
4 Loftus, J.C., Smith, J.W., Ginsberg, M.H., 1994. Integrin-mediated cell adhesion: the extracellular face. J. Biol. Chem. 269, 25235-25238.
5 Macrae, I.J., Zhou, K., Li, F., Repic, A., Brooks, A.N., Cande, W.Z., Adams, P.D., Doudna, J.A., 2006. Structural basis for double-stranded RNA processing by Dicer. Science 311, 195-198.   DOI
6 Mamali, I., Lamprou, I., Karagiannis, F., Karakantza, M., Lampropoulou, M., Marmaras, V.J., 2009. A beta integrin subunit regulates bacterial phagocytosis in medfly haemocytes. Dev. Comp. Immunol. 33, 858-866.   DOI
7 Mohamed, A.A., Kim, Y., 2011. A target-specific feeding toxicity of ${\beta}$1 integrin dsRNA against diamondback moth, Plutella xylostella. Arch. Insect Biochem. Physiol. 78, 216-230.   DOI
8 Park, Y., Ahn, S.J., Vogel, H., Kim, Y., 2014. Integrin ${\beta}$ subunit and its RNA interference in immune and developmental processes of the Oriental tobacco budworm, Helicoverpa assulta. Dev. Comp. Immunol. 47, 59-67.   DOI
9 Park, Y., and Kim, Y., 2013. RNA interference of cadherin gene ex pression in Spodoptera exigua reveals its significance as a specific Bt target. J. Invertebr. Pathol. 114, 285-291   DOI
10 SAS Institute, 1989. SAS/STAT User's Guide. SAS Institute, Inc., Cary, NC.
11 Scott, J.G., Michel, K., Bartholomay, L.C., Siegfired, B.D., Hunter, W.B., Smagghe, G., Zhu, K.Y., Douglas, A.E., 2013. Towards the elements of successful insect RNAi. J. Insect Physiol. 59, 1212-1221.   DOI
12 Shih, J.D., Hunter, C.P., 2011. SID-1 is a dsRNA-selective dsRNA-gated channel. RNA 17, 1057-1065.   DOI
13 Surakasi, V.P., Mohamed, A.A.M., Kim, Y. 2011. RNA interference of ${\beta}$1 integrin subunit impairs development and immune responses of the beet armyworm, Spodoptera exigua. J. Insect Physiol. 57, 1537-1544.   DOI
14 Tian, H., Peng, H., Yao, Q., Chen, H., Xie, Q. Tang, B., Zhuang, W., 2009. Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a Non-Midgut gene. PLoS One 4, e6225.   DOI
15 Turner, C.T., Davy, M.W., MacDiarmid, R.M., Plummer, K.M., Birch, N.P., Newcomb, R.D., 2006. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol. Biol. 15, 383-391.   DOI
16 van der Flier, A., Sonnenberg, A., 2001. Function and interactions of integrins. Cell Tissue Res. 305, 285-298.   DOI
17 Wynant, N., Santos, D., Van Wielendaele, P., Vanden Broeck, J., 2014. Scavenger receptor-mediated endocytosis facilitates RNA interference in the desert locust, Schistocerca gregaria. Insect Mol. Biol. 23, 320-329.
18 Zhou, X.G., Wheeler, M.M., Oi, F.M., Scharf, M.E., 2008. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larva resistance to permethrin. Insect Biochem. Mol. Biol. 39, 38-46.
19 Zhuang, S., Kelo, L., Nardi, J.B., Kanost, M.R., 2007a. An integrin-tetraspanin interaction required for cellular innate immune responses of an insect, Manduca sexta. J. Biol Chem. 282, 22563-22572.   DOI
20 Zhu, F., Palli, R., Ferguson, J., Palli, S.R., 2011. Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Manag. Sci. 67, 175-182.   DOI
21 Zhuang, S., Kelo, L., Nardi, J.B., Kanost, M.R., 2007b. Neuroglian on hemocyte surfaces is involved in homophilic and heterophilic interactions of the innate immune system of Manduca sexta. Dev. Comp. Immunol. 31, 1159-1167.   DOI
22 Zhuang, S., Kelo, L., Nardi, J.B., Kanost, M.R., 2008. Multiple alpha subunits of integrin are involved in cell-mediated responses of the Manduca immune system. Dev. Comp. Immunol. 32, 365-379.   DOI
23 Brower, D.L., 2003. Platelets with wings: the maturation of Drosophila integrin biology. Curr. Opin. Cell Biol. 15, 607-613.   DOI
24 Ahn, S.J., Badenes-Perez, F.R., Heckel, D.G., 2011. A host-plant specialist, Helicoverpa assulta, is more tolerant to capsaicin from Capsicum annuum than other noctuid species. J. Insect Physiol. 57, 1212-1219.   DOI
25 Aroujo, R.N., Santos, A., Pinto, F.S., Gontijo, N.F., Lehane, M.J., Pereira, M.H., 2006. RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect Biochem. Mol. Biol. 36, 683-693.   DOI
26 Baum, J.A., Bogaert, T., Clinton, W., Heck, G.R., Feldmann, P., Ilangan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T., Roberts, J., 2007. Control of coleopteran insect pests through RNA interference. Nature Biotech. 25, 1322-1326.   DOI
27 Bautista, M.A.M., Miyata, T., Miura, K., Tanaka, T., 2009. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem. Mol. Biol. 39, 38-46.   DOI
28 Bravo, A., Likitvivatanavong, S, Gill, S., Soberon, M. 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41, 423-431.   DOI
29 Burridge, K., Fath, K., Kelly, T., Nuckolls, G., Turner, C., 1988. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell Biol. 4, 487-525.   DOI
30 Cancino-Rodezno, A., Alexander, C., Villasenor, R., Pacheco, S., Porta, H., Pauchet, Y., Soberon, M., Gill, S.S., Bravo, A., 2010. The mitogen-activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis. Insect Biochem. Mol. Biol. 40, 58-63.   DOI
31 Fablet, M., 2014. Host control of insect endogenous retroviruses: small RNA silencing and immune response. Viruses 6, 4447-4464   DOI
32 Fire, A., 2005. Nucleic acid structure and intracellular immunity: some recent ideas from the world of RNAi. Q. Rev. Biophys. 38, 303-309   DOI
33 Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C., 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.   DOI
34 Goh, H.G., Lee, S.G., Lee, B.P., Choi, K.M., Kim, J.H., 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae), on an artificial diet. Kor. J. Appl. Entomol. 29, 180-183.
35 Huvenne, H., Smagghe, G., 2010. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J. Insect Physiol. 56, 227-235.   DOI
36 Griebler, M., Westerlund, S.A., Hoffmann, K.H., Meyerringe-Vos, M., 2008. RNA interference with the allatoregulating neuropeptide genes from the fall armyworm Spodoptera frugiperda and its effects on the JH titer in the hemolymph. J. Insect Physiol. 54, 997-1007.   DOI
37 Hughes, A.L., 2001. Evolution of the integrin ${\alpha}$ and ${\beta}$ protein families. J. Mol. Evol. 52, 63-72.   DOI
38 Humphries, M.J., Travis, M.A., Clark, K., Mould, A.P., 2004. Mechanisms of integration of cells and extracellular matrices by integrins. Biochem. Soc. Trans. 32, 822-825.   DOI
39 Hynes, R.O., 2002. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673-687.   DOI
40 Hynes, R.O., Zhao, Q., 2000. The evolution of cell adhesion. J. Cell Biol. 150, F89-F95.   DOI
41 Irving, P., Ubeda, J.M., Doucet, D., Troxler, L., Lagueux, M., Zachary, D., Hoffmann, J.A., Hetru, C., Meister, M., 2005. New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell. Microbiol. 7, 335-350.   DOI
42 Kim, E., Park, Y., Kim, Y., 2015a. A transformed bacterium expressing double-stranded RNA specific to integrin ${\beta}$1 enhances Bt toxin efficacy against a polyphagous insect pest, Spodoptera exigua. PLoS One 10, e0132631.   DOI
43 Kim, Y., Lee, J., Kang, S., Han, S., 1998. Age variation in insecticide susceptibility and biochemical changes of beet armyworm, Spodoptera exigua (Hubner). J. Asia Pac. Entomol. 1, 109-113.   DOI