Browse > Article
http://dx.doi.org/10.5656/KSAE.2015.01.1.066

Post-harvest Treatment on the Peach Pyralid Moth and the Small Tea Tortrix Moth Infesting Apples Using Controlled Atmosphere and Temperature Treatment System  

Hong, Youkyeong (Department of Bioresource Sciences, Andong National University)
Kwon, Kimyeon (Institute of Biological Utility)
Kim, Yonggyun (Department of Bioresource Sciences, Andong National University)
Publication Information
Korean journal of applied entomology / v.54, no.1, 2015 , pp. 17-23 More about this Journal
Abstract
A complete control on quarantine insect pests is required for exporting domestic apples to other countries. To this end, a controlled atmosphere and heat treatment system (CATTS) has been developed as a post-harvest treatment. This study determined the CATTS conditions to control completely two lepidopteran insect pests, the smaller tea tortrix moth, Adoxophyes paraorana and the peach pyralid moth, Dichocrocis punctiferalis, which exhibit different feeding behviors. In both species, the fifth instar larvae were the most tolerant developmental stage to the heat treatment. Under CATTS conditions with 15% $CO_2$ and 1% $O_2$ for 1 h heat treatment at $46^{\circ}C$, the fifth instar larvae of A. paraorana exhibited a complete lethality, while those of D. punctiferalis underwent 88% mortality. To control completely the fifth instar larvae of D. punctiferalis, 2 h heat treatment required under the same atmosphere condition. These CATTS treatment effects were confirmed against over 3,000 fifth instar larvae of each species infesting apples. This study demonstrates that the longer exposure to CATTS conditions is required for the complete disinfestation of the internal apple feeder compared to the non-internal apple feeder.
Keywords
Apple; Post-harvest treatment; CATTS; Adoxophyes paraorana; Dichocrocis punctiferalis;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Butz, P., Tauscher, B., 1995. Inactivation of fruit fly eggs by high pressure treatment. J. Food Process. Preserv. 19, 161-164.   DOI   ScienceOn
2 Byun, B.K., Lee, B.W., Lee, E.S., Choi, D.S., Park, Y.M., Yang, C.Y., Lee, S.K., Cho, S., 2011. A review of the genus Adoxophyes (Lepidoptera: Tortricidae) in Korea, with description of A. paraorana sp. nov. Anim. Cell. Sys. 16, 154-161.
3 Carpenter, A., Potter, M., 1994. Controlled atmospheres. pp. 171-198. In Quarantine treatments for pests and food plants. eds. by J.L. Sharp, G.J. Hallman. Westview, Boulder, CO.
4 Neven, L.G., 2008. Organic quarantine treatment for tree fruits. HortScience 43, 22-26.
5 Neven, L.G., Drake, S.R., 2000. Comparison of alternative quarantine treatments for sweet cherries. Postharvest Biol. Technol. 20, 107-114.   DOI
6 Neven, L.G., Drake, S.R., Shellie, K., 2001. Development of a high temperature controlled atmosphere quarantine treatment for pome and stone fruits. Acta Hortic. 553, 457-460.
7 Neven, L.G., Hansen, L.D., 2010. Effects of temperature and controlled atmospheres on codling moth metabolism. Ann. Entomol. Soc. Am. 103, 418-413.   DOI
8 Neven, L.G., Follett, P.A., Raghubeer, E., 2007. Potential for high hydrostatic pressure processing to control quarantine insects in fruit. J. Econ. Entomol. 100, 1499-1503.   DOI
9 Neven, L.G., Mitcham, E.J., 1996. CATTS: controlled atmosphere temperature treatment system, a novel approach to the development of quarantine treatments. Am. Entomol. 42, 56-59.   DOI
10 Neven, L.G., Rehfield-Ray, L., 2006. Confirmation and efficacy tests against codling moth and oriental fruit moth in apples using combination heat and controlled atmosphere treatments. J. Econ. Entomol. 99, 1620-1627.   DOI
11 NOP (National Organic Program), 2007. National Organic Program. http://www.ams.usda.gov/nop/indexIE.htm.
12 Northwest Horticultural Council, 2006. Export manual. 9 Oct. 2007. http://www.nwhort.org.
13 Obenland, D., Neipp, P., Mackey, B., Neven, L.G., 2005. Peach and nectarine quality following treatment with high temperature forced air combined with controlled atmospheres. HortScience 40, 1425-1430.
14 Clary, D.O., Wolstenholme, D.R., 1985. The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J. Mol. Evol. 22, 252-271.   DOI
15 Choi, K.S., 1998. The peach pyralid moth, Dichocrocis purictiferalis Gueneѐ (Lepidoptera: Pyralidae), adults: circadian rhythms in activity and seasonal occurrence at chestnut orchards. Ph.D. Dissertation, Seoul National University, Seoul, Korea.
16 Choi, K.H., Lee, D.H., Byun, B.K., Mochizuki, F., 2009. Occurrence of Grapholita dimorpha Komai (Lepidoptera: Tortricidae), a new insect pest in apple orchards of Korea. Kor. J. Appl. Entomol. 48, 417-421.   DOI   ScienceOn
17 Choi, K.S., Han, K.S., Jeon, M.J., Chung, Y.J., Kim, C.S., Shin, S.C., Park, J.D., Boo, K.S., 2004. Seasonal occurrence of the peach pyralid moth, Dichocrocis punctiferalis at chestnut orchards in some provinces of Korea. J. Kor. For. Soc. 93, 134-139.
18 Follett, P.A., Neven, L.G., 2006. Current trends in quarantine entomology. Annu. Rev. Entomol. 51, 359-385.   DOI
19 Hollingsworth, R.G., Armstrong, J.W., 2005. Potential of temperature, controlled atmospheres, and ozone fumigation to control thrips and mealybugs on ornamental plants for export. J. Econ. Entomol. 98, 289-298.   DOI
20 Ikediala, J.N., Tang, J., Neven, L.G., Drake, S.R., 1999. Quarantine treatment of cherries using 915 MHz microwaves: temperature mapping, codling moth mortality and fruit quality. Postharvest Biol. Technol. 16, 127-137.   DOI
21 Jo, H., Kim, Y., 2001. Relationship between cold hardiness and diapause in the smaller tea tortrix, Adoxophyes orana (Fischer von Roslersthamm). J. Asia Pac. Entomol. 4, 1-9.   DOI
22 Sharp, J.L., Hallman, G.J., 1994. Quarantine treatments for pests and food plants. Westview, Boulder, CO.
23 Park, H., Park, I.J., Lee, S.Y., Han, K.S., Yang, C.Y., Boo, K.S., Park, K.T., Lee, J.W., Cho, S., 2008. Molecular identification of Adoxophyes orana complex (Lepidoptera: Tortricidae) in Korea and Japan. J. Asia Pac. Entomol. 11, 49-52.   DOI
24 Paull, R.E., Armstrong, J.W., 1994. Insect pests and fresh horticultural products: treatments and responses. CAB International, Wallingford, UK.
25 Pimentel D., Lach, L., Zuniga, R., Morrison, D., 2002. Environmental and economic costs of alien arthropods and other organisms in the United States. pp. 285-303. In Invasive arthropods in agriculture: problems and solutions. eds. by G.J. Hallman, C.P. Schwalbe. Science, Enfield, NH.
26 Shrestha, S., Abdul, M., Kim, S., Kwon, M., Lee, D., Kim, Y., 2009. Diagnostic molecular markers of six lepidopteran insect pests infesting apples in Korea. J. Asia Pac. Entomol. 12, 107-111.   DOI
27 Son, Y., Choi, K.H., Kim, Y., Kim, Y., 2010. Application of CATTS as a postharvest phytosanitation technology against the peach fruit moth, Carposina sasakii Matsumura. Kor. J. Appl. Entomol. 49, 37-42.   DOI
28 Son, Y., Chon, I., Neven, L., Kim, Y., 2012a. Controlled atmosphere and temperature treatment system to disinfest fruit moth, Carposina sasakii (Lepidoptera: Carposinidae) on apples. J. Econ. Entomol. 105, 1540-1547.   DOI
29 Son, Y., Lee, J., Kim, Y., 2012b. Controlled efficacy of controlled atmosphere and temperature treatment system against the hawthorn spider mite, Tetranychus viennensis. Kor. J. Appl. Entomol. 51, 131-140.   DOI
30 Jung, C.R., Kim, Y., 2011. Different types of fruit damages of three internal apple feeders diagnosed with mitochondrial molecular markers. J. Asia Pac. Entomol. 16, 189-197.
31 Jung, C.R., Kwon, K., Kim, Y., 2014. A postharvest control technique of the oriental fruit moth, Grapholita molesta, infesting apples using CATTS. Kor. J. Appl. Entomol. 53, 73-80.   DOI
32 Jung, J.K., Han, K.S., Choi, K.S., Boo, K.S., 2000. Sex pheromone composition for field-trapping of Dichocrocis punctiferalis (Lepidoptera: Pyralidae) males. Kor. J. Appl. Entomol. 39, 105-110.
33 Kells, S.A., Mason, L.J., Maier, D.E., Woloshuk, C.P., 2001. Efficacy ad fumigation characteristics of ozone in stored maize. J. Stored Prod. Res. 37, 371-382.   DOI
34 Konno, Y., Honda, H., Matsumoto, Y., 1981. Mechanisms of reproductive isolation between the fruit-feeding and the Pinaceae feeding types of the yellow peach moth, Dichocrocis punctiferalis Guenee. Appl. Entomol. Zool. 25, 253-258.   DOI
35 Lee, S., 1993. Handbook of integrated pest management in apple orchard. pp. 153-154.
36 Liu, Y.B., 2003. Effects of vacuum and controlled atmosphere on insect mortality and lettuce quality. J. Econ. Entomol. 96, 1110-1117.
37 McEvoy, M., 2003. Organic certification in the United States and Europe 9 Oct. 2007. http://postharvest.tfrec.wsu.edu/PC2003E.pdf.
38 Nelson, S.O., 1996. Review and assessment of radio-frequency and microwave energy for stored-grain insect control. Trans. ASAE 39, 1475-1484.   DOI
39 Neven, L.G., 2000. Physiological responses of insects to heat. Postharvest Biol. Technol. 21, 103-111.   DOI   ScienceOn
40 Tang, J., Ikediala, J.N., Wang, S., Hansen, J.D., Cavalieri, R.P., 2000. High-temperature short-time thermal quarantine methods. Postharvest Biol. Technol. 21, 129-145.   DOI
41 Toba, H.H., Howell, J.F., 1991. An improved system for mass-rearing codling moths. J. Entomol. Soc. Br. Columbia 88, 22-27.
42 Torres, J.A., Velazquez, G., 2005. Commercial opportunities and research challenges in the high pressure processing of foods. J. Food Eng. 67, 95-112.   DOI
43 Wang, S., Tang, J., Johnson, J.A., Micham, E., Hansen, J.D., 2002. Process protocols based on radio frequency energy to control field and storage pests in inshell walnuts. Postharvest Biol. Technol. 26, 265-273.   DOI