Effect of Cellular Phospholipase A2 Inhibition on Enhancement of Bt Insecticidal Activity |
Eom, Seonghyeon
(Department of Bioresource Sciences, Andong National University)
Park, Jiyeong (Department of Bioresource Sciences, Andong National University) Kim, Kunwoo (Department of Bioresource Sciences, Andong National University) Kim, Yonggyun (Department of Bioresource Sciences, Andong National University) |
1 | Shrestha, S., Kim, Y., 2009. Biochemical characteristics of immune-associated phospholipase and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47, 774-782. DOI |
2 | Stanley, D., Kim, Y., 2014. Eicosanoid signaling in insects; from discovery to plant protection. Crit. Rev. Plant Sci. 33, 20-63. DOI |
3 | Stanley-Samuelson, D.W., Dadd, R.H., 1981. Arachidonic acid and other tissue fatty acids of Culex pipiens reared with various concentrations of dietary arachidonic acid. J. Insect Physiol. 27, 571-578. DOI ScienceOn |
4 | Park, Y. and Kim, Y. 2003. Xenorhabdus nematophilus inhibits p-bromophenacyl bromide (BPB)-sensitive of Spodoptera exigua. Arch. Insect Biochem. Physiol. 54, 143-142. DOI ScienceOn |
5 | Stanley-Samuelson, D.W., Dadd, R.H., 1983. Long-chain polyunsaturated fatty acids: patterns of occurrence in insects. Insect Biochem. 13, 549-588. DOI ScienceOn |
6 | Uozumi, N., Kume, K., Nagase, T., Nakatani, N., Ishii, S., Tashiro, F., Komagata, Y., Maki, K., Ikuta, K., Ouchi, Y., Miyazaki, J., Shimizu, T., 1997. Role of cytosolic phospholipase in allergic response and parturition. Nature 390, 618-622. DOI ScienceOn |
7 | Zhang, X., Candas, M., Griko, N.B., Taussig, R., Bulla, L.A., Jr., 2006. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 103, 9897-9902. DOI ScienceOn |
8 | Park, Y., Kim, Y., 2005. Inhibitory effect of an entomopathogenic bacterium, Xenorhabdus nematophila, on the release of arachidonic acid from the membrane preparation of Spodoptera exigua. J. Asia Pac. Entomol. 8, 61-67. 과학기술학회마을 DOI |
9 | Park, Y., Kim, Y., 2013. RNA interference of cadherin gene expression in Spodoptera exigua reveals its significance as a specific Bt target. J. Invertebr. Pathol. 114, 285-291. DOI ScienceOn |
10 | Park, Y., Kim, Y., Stanley, D., 2004a. The bacterium Xenorhabdus nematophila inhibits phospholipase from insect, prokaryote, and vertebrate sources. Naturwissenschaften 91, 371-373. |
11 | Park, Y., Kim, Y., Tunaz, H., Stanley, D.W., 2004b. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits hemocytic phospholipase () in tobacco hornworm, Manduca sexta. J. Invertebr. Pathol. 86, 65-71. DOI ScienceOn |
12 | SAS Institute, Inc. 1989. SAS/STAT user's guide, release 6.03, Ed. Cary, N.C. |
13 | Roh, J.Y., Choi, J.Y., Li, M.S., Jin, B.R., Je, Y.H., 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17, 547-559. |
14 | Radvanyi, F., Jordan, L., Russo-Marie, F., Bon, C., 1989. A sensitive and continuous fluorometric assay for phospholipase using pyrene-labeled phospholipids in the presence of serum albumin. Anal. Biochem. 177, 103-109. DOI ScienceOn |
15 | Rahman, M.M., Roberts, H.L.S., Sarjan, M., Asgari, S., Schmidt, O., 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc. Natl. Acad. Sci. USA 101, 2696-2699. DOI ScienceOn |
16 | Richards, E.H., Dani, M.P., 2010. A recombinant immunosuppressive protein from Pimpla hypochondriaca (rVPr1) increases the susceptibility of Lacanobia oleracea and Mamestra brassicae larvae to Bacillus thuringiensis. J. Invertebr. Pathol. 104, 51-57. DOI ScienceOn |
17 | Schaloske, R.H., Dennis, E.A., 2006. The phospholipase superfamily and its group numbering system. Biochim. Biophys. Acta 61, 1246-1259. |
18 | Seo, S., Kim, Y., 2010. Study on development of novel biopesticides using entomopathogenic bacterial culture broth of Xenorhabdus and Photorhabdus. Kor. J. Appl. Entomol. 49, 241-249. 과학기술학회마을 DOI |
19 | Seo, S., Lee, S., Hong, Y., Kim, Y., 2012. Phospholipase inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Entomol. 78, 3816-3823. DOI |
20 | Shrestha, S., Hong, Y., Kim, Y., 2010. Two chemical derivatives of metabolites suppress cellular immune responses and enhance pathogenicity of Bacillus thuringiensis against the diamondback moth, Plutella xylostella. J. Asia Pac. Entomol. 13, 55-60. 과학기술학회마을 DOI ScienceOn |
21 | Bravo, A., Gomez, I., Porta, H., Garcia-Gomez, B.I., Rodriguez- Almazan, C., Pardo, L., Soberon, M., 2012. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microbial Biotechnol. 6, 17-26. |
22 | Akhurst, R.J., 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121, 303-309. |
23 | Broderick, N.A., Raffa, K.F., Handelsman, J., 2010. Chemical modulators of the innate immune response alter gypsi moth larval susceptibility to Bacillus thuringiensis. BMC Microbiol. 10, 129. DOI ScienceOn |
24 | Blomquist, G.J., Borgeson, C.E., Vundla, M., 1991. Polyunsaturated fatty acids and eicosanoids in insects. Insect Biochem. 21, 99-106. DOI ScienceOn |
25 | Bravo, A., Likitvivatanavong, S., Gill, S.S., Soberon, M., 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41, 423-431. DOI ScienceOn |
26 | Broderick, N.A., Raffa, K.F., Handelsman, J., 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103, 15196-15199. DOI ScienceOn |
27 | Burke, J.E., Dennis, E.A., 2009. Phospholipase structure/function, mechanism, and signaling. J. Lipid Res. 50, 5237-5242. |
28 | Christie, W.W., 2003. Lipid analysis, in: Christie, W.W. (Ed.), Isolation, separation, identification and structural analysis of lipids. The Oily Press, Bridgewater, UK, pp. 373-387. |
29 | Darboux, I., Pauchet, Y., Castella, C., Silva-Filha, M.H., Nielsen-LeRoux, C., Charles, J.F., Pauron, D., 2002. Loss of the membrane anchor of the target receptor is a mechanism of bioinsecticide resistance. Proc. Natl. Acad. Sci. USA 99, 5830-5835. DOI ScienceOn |
30 | Crickmore, N., Zeigler, D.R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 807-813. |
31 | Eom, S., Park, Y., Kim, Y., 2014. Sequential immunosuppressive activities of bacterial secondary metabolites from the entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 52, 161-168. DOI ScienceOn |
32 | Crickmore, N., Baum, J., Bravo, A., Lereclus, D., Narva, K, Sampson, K., Schnepf, E., Sun, M., Zeigler, D.R., 2014. 'Bacillus thuringiensis toxin nomenclature'. http://www.btnomenclature.info. |
33 | Cripps, C., Borgeson, C., Blomquist, G.J., de Renobales, M., 1990. The desatuase from the house cricket Acheta domesticus (Orthoptera: Gryllidae): Characterization and form of substrate. Arch. Biochem. Biophys. 278, 46-51. DOI ScienceOn |
34 | Dubovskiy, I.M., Krukova, N.A., Glupov, V.V., 2008. Phagocytic activity and encapsulation rate of Galleria mellonella larval haemocytes during bacterial infection by Bacillus thuringiensis. J. Invertebr. Pathol. 98, 360-362. DOI ScienceOn |
35 | ffrench-Constant, R.H., Waterfield, N., Daborn, P., 2005. Insecticidal toxins from Photorhabdus and Xenorhabdus. in: Gilbert, L.I., Iatrou, K., Gill, S.S., (Eds.), Comprehensive molecular insect science. Elsevier, New York, pp. 239-253. |
36 | Folch, J., Lees, M., Stanley, G.H.S., 1957. A simple method for the isolation and purification of total lipid from animal tissue. J. Biol. Chem., 226, 497-509. |
37 | Gahan, L.J., Gould, F., Heckel, D.G., 2001. Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293, 857-860. DOI ScienceOn |
38 | Hwang, J., Park, Y., Kim, Y., 2013. An entomopathogenic bacterium, Xenorhabdus nematophila, suppresses expression of antimicrobial peptides controlled by Toll and IMD pathways by blocking eicosanoid biosynthesis. Arch. Insect Biochem. Physiol. 83, 151-169. DOI ScienceOn |
39 | Goh, H.G., Lee, S.G. Lee, B.P., Choi, G.M., Kim, J.H., 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua. Kor. J. Appl. Entomol. 29, 180-183. 과학기술학회마을 |
40 | Garbutt, J., Bonsall, M.B., Wright, D.J., Raymond, B., 2011. Antagonistic competition moderates virulence in Bacillus thuringiensis. Ecol. Lett. 14, 765-772. DOI ScienceOn |
41 | Grizanova, E.V., Dubovskiy, I.M., Whitten, M.M.A., Glupov, V.V., 2014. Contributions of cellular and humoral immunity of Galleria mellonella larvae in defence against oral infection by Bacillus thuringiensis. J. Invertebr. Pathol. 119, 40-46. DOI ScienceOn |
42 | Jung, S., Kim, Y., 2006. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35, 1584-1589. DOI ScienceOn |
43 | Jurenka, R.A., Stanley-Samuelson, D.W., Loher, W., Blomquist, G.J., 1988. De novo biosynthesis of arachidonic acid and 5,11,14-eicosatrienoic acid in the cricket Teleogryllus commodus. Biochim. Biophys. Acta 963, 21-27. DOI ScienceOn |
44 | Kaya, H.K., Gaugler, R., 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38, 181-206. DOI ScienceOn |
45 | Kim, Y., D. Ji, S. Cho and Y. Park. 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase to induce host immunodepression. J. Invertebr. Physiol. 89, 258-264. DOI ScienceOn |
46 | Metcalfe, L.D., Schmitz, A.A., 1961. The rapid preparation of fatty acid esters for gas chromatographic analysis. Anal. Chem. 33, 363-364. DOI |
47 | Martinez-Ramirez, A.C., Gould, F., Ferre, J., 1999. Histopathological effects and growth reduction in a susceptible and a resistant strain of Heliothis virescens (Lepidoptera: Noctuidae) caused by sublethal doses of pure Cry1A crystal proteins from Bacillus thuringiensis. Biocontrol Sci. Technol. 9, 239-246. DOI |
48 | Kwon, S., Kim, Y., 2007. Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp. kurstaki against diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Biol. Control 42, 72-76. DOI ScienceOn |
49 | Ma, G., Roberts, H., Sarjan, M., Featherstone, N., Lahnstein, J., Akhurst, R., Schmidt, O., 2005. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant, Helicoverpa armigera larvae? Insect Biochem. Mol. Biol. 35, 729-739. DOI ScienceOn |
50 | Oppert, B., Kramer, K.J., Johnson, D.E., Macintosh, S.C., Mcgaughey, W.H., 1994. Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella. Biochem. Biophys. Res. Commun. 198, 940-947. DOI ScienceOn |
51 | Park, Y., Kim, Y., 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46, 1469-1476. DOI ScienceOn |
52 | de Maagd, R.A., Bravo, A., Crickmore, N., 2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17, 193-199. DOI ScienceOn |
53 | Jurenka, R.A., de Renobales, M., Blomquist, G.J., 1987. De novo biosynthesis of polyunsaturated fatty acids in the cockroach, Periplaneta americana. Arch. Biochem. Biophys. 255, 184-193. DOI ScienceOn |
54 | Bravo, A., Gill, S.S., Soberon, M., 2005. Bacillus thuringiensis mechanisms and use, in: Gilbert, L.I., Iatrou, K., Gill, S.S., (Eds.), Comprehensive molecular insect science. Elsevier, New York, pp. 175-206. |