Browse > Article
http://dx.doi.org/10.5656/KSAE.2013.09.0.049

Identification and Physiological Characters of Intestinal Bacteria of the Black Soldier Fly, Hermetia illucens  

Kim, Eunsung (Department of Bioresource Sciences, Andong National University)
Park, Jiyeong (Department of Bioresource Sciences, Andong National University)
Lee, Sanghoon (GreenTeko, Inc.)
Kim, Yonggyun (Department of Bioresource Sciences, Andong National University)
Publication Information
Korean journal of applied entomology / v.53, no.1, 2014 , pp. 15-26 More about this Journal
Abstract
The black soldier fly, Hermetia illucens, larvae may depend on indigenous bacteria in the intestine to feed and digest diverse food sources. To prove this hypothesis, we isolated and identified the intestinal bacteria of the black soldier fly for their digestive and antimicrobial abilities. The last instar larvae had long digestive tracts, which were about seven times longer than its body length. An individual of H. illucens larvae possessed a total of $5.0{\pm}10^6$ bacteria in the whole intestine, of which more than 98% bacteria were located in the hindgut. Three different bacterial isolates cultured on nutrient agar (NA) medium were detected in the intestine and identified as Morganella morganii, Providencia rettgeri and Bacillus halodurans by Biolog microbial identification system. Analysis of 16S rDNA sequences of the intestinal bacteria detected the additional bacteria of Proteus mirabilis, Providencia alcalifaciens, and Providencia sp. These intestinal bacteria cultured on NA medium exhibited high resistance to 4 antibiotics and inhibited growth of other microbes which are mainly plant pathogens. Also, these bacteria exhibited catalytic activities to degrade cellulose, lipid, proteins, and carbohydrates. These results suggest that H. illucens larvae possess intestinal bacteria that may play crucial roles in their digestive physiology.
Keywords
Black soldier fly; Enterobacterium; Antimicrobial activity; Digestive enzyme; Symbiosis;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Basset, A., Tzou, P., Lemaitre, B., Boccard, F., 2003. A single gene that promotes interaction of a phytopathogenic bacterium with its insect vector, Drosophila melanogaster. EMBO Rep. 4, 205-209.   DOI   ScienceOn
2 Berg, R.D., 1996. The indigenous gastrointestinal microflora. Trends Microbiol. 4, 430-435.   DOI   ScienceOn
3 Clark, T.M., 1999. Evolution and adaptive significance of larval midgut alkalinization in the insect superorder Mecopterida. J. Chem. Ecol. 25, 1945-1960.   DOI   ScienceOn
4 Bischoff, V., Vignal, C., Duvic, B., Boneca, I.G., Hoffmann, J.A., Royet, J., 2006. Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLoS Pathog. 2, e14.   DOI
5 Breznak, J.A., 2000. Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. Oecologia 110, 209-231.
6 Choi. W.H., Yun, J.H., Chu, J.P., Chu, K.B., 2012. Antibacterial effect of extracts of Hermetia illucens (Diptera: Stratiomyidae) larvae against Gram-negative bacteria. Entomol. Res. 42, 219-226.   DOI   ScienceOn
7 Diener, S., Zurbrugg, C., Tockner, K., 2009. Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Manag. Res. 27, 603-610.   DOI   ScienceOn
8 Dillon, R.J., Charnley, A.K., 1988. Inhibition of Metarhizium anisopliae by the gut bacteria flora of the desert locust-characterization of antifungal toxins. Can. J. Microbiol. 34, 1075-1082.   DOI
9 Douglas, A.E., 1998. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43, 17-37.   DOI   ScienceOn
10 Erdmann, G.R., 1987. Antibacterial action of myiasis-causing flies. Parasitol. Today 3, 214-216.   DOI   ScienceOn
11 Erickson, M.C., Islam, M., Sheppard, C., Liao, J., Doyle, M.P., 2004. Reduction of Escherichia coli 0157:H7 and Salmonella enterica serovar enteritidis in chicken manure by larvae of the black soldier fly. J. Food Protect. 67, 685-690.
12 Ji, D., Kim, Y., 2004. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits the expression of an antibacterial peptide, cecropin, of the beet armyworm, Spodoptera exigua. J. Insect Physiol. 50, 489-496.   DOI   ScienceOn
13 Ha, E.M., Oh, C.T., Bae, Y.S., Lee, W.J., 2005a. A direct role for dual oxidase in Drosophila gut immunity. Science 310, 847-850.   DOI   ScienceOn
14 Kim, W., Bae, S., Kim, A., Park, K., Lee, S., Choi, Y., Han, S., Park, Y., Koh, Y., 2011a. Characterization of the molecular features and expression patterns of two serine proteases in Hermetia illucens (Diptera: Stratiomyidae) larvae. BMB reports 44, 387-392.   과학기술학회마을   DOI   ScienceOn
15 Ha, E.M., Oh, C.T., Ryu, J.H., Bae, Y.S., Kang, S.W., Jang, I.H., Brey, P.T., Lee, W.J., 2005b. An antioxidant system required for host protection against gut infection in Drosophila. Dev. Cell 8, 125-132.   DOI   ScienceOn
16 Jeon, H., Park, S., Choi, J., Jeong, G., Lee, S.B., Choi, Y., Lee, S.J., 2011. The intestinal bacterial community in the food waste-reducing larvae of Hermetia illucens. Curr. Microbiol. 62, 1390-1399.   DOI
17 Ji, D., Yi, Y., Kang, G.H., Choi, Y.H., Kim, P., Baek, N.I., Kim, Y., 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-patho genic bacteria. FEMS Microbiol. Lett. 239, 241-248.   DOI   ScienceOn
18 Kim, W., Bae, S., Park, K., Lee, S., Choi, Y., Han, S., Koh, Y., 2011b. Biochemical characterization of digestive enzymes in the black solder fly, Hermetia illucens (Diptera: Stratiomyidae). J. Asia Pac. Entomol. 14, 11-14.   DOI   ScienceOn
19 Landi, S., 1960. Bacteriostatic effect of hemolymph of larvae of various botflies. Can. J. Microbiol. 6, 115-119.   DOI   ScienceOn
20 Newton, G.L., Booram, C.V., Barker, R.W., Hale, O.M., 1997. Dried Hermetia illucens larvae meal as a supplement for swine. J. Anim. Sci. 44, 395-400.
21 Park, J., Lee, S., Lee, H., Kim, Y., 2013. Effect of stress sound on the development of the black soldier fly, Hermetia illucens. Korean J. Appl. Entomol. In Press.   과학기술학회마을   DOI   ScienceOn
22 Lee, Y.Y., Lee, J.K., Park, K.H., Kim, S.Y., Roh, S.W., Lee, S.B., Choi, Y., Lee, S.J., 2013. Paenalcaligenes hermetiae sp. nov., isolated from the larval gut of Hermetia illucens (Diptera:Stratiomyidae). Int. J. Syst. Evol. Microbiol. In press.
23 Lhocine, N., Ribeiro, P.S., Buchon, N., Wepf, A., Wilson, R., 2008. PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling. Cell Host Microbe 4, 147-158.   DOI   ScienceOn
24 Natori, S., 1995. Antimicrobial proteins of insects and their clinical application. Nippon Rinsho. 5, 1297-1304.
25 Park, J.W., Lee, B.L., 2012. Insect immunology, in: Gilbert, L.I. (Ed.), Insect molecular biology and biochemistry. Academic Press, New York, pp. 480-512.
26 Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59-65.   DOI   ScienceOn
27 Ryu, J.H., Kim, S.H., Lee, H.Y., Bai, J.Y., Nam, Y.D., Bae, J.W., Lee, D.G., Shin, S.C., Ha, E.M., Lee, W.J., 2008. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319, 777-782.   DOI   ScienceOn
28 Takatsuka, J., Kunimi, Y., 2000. Intestinal bacterial affect growth of Bacillus thuringiensis in larvae of the oriental tea tortrix, Homona magnanima Diakonoff (Lepidoptera: Tortricidae). J. Invertebr. Pathol. 76, 222-226.   DOI   ScienceOn
29 Sheppard, D.C., Tomberlin, J.K., Joyce, J.A., Kiser, B.C., Sumner, S.M., 2002. Rearing methods for the black soldier fly (Diptera: Stratiomyidae). J. Med. Entomol. 39, 695-698.   DOI   ScienceOn
30 Sambrook, J., Fritsch, E.F., Maniatis, T., 1989. Molecular cloning. A laboratory manual. 2nd ed. Cold Spring Harbour Press, NY.
31 Sherman, R.A., Hall, M.J.R., Thomas, S., 2000. Medical maggots: an ancient remedy for some contemporary afflictions. Annu. Rev. Entomol. 45, 55-81.   DOI   ScienceOn
32 Watanabe, K., Hara, W., Sato, M., 1998. Evidence for growth of strains of the plant epiphytic bacterium Erwinia herbicola and transconjugation among the bacterial strains in guts of the silkworm Bombyx mori. J. Invertebr. Pathol. 72, 104-111.   DOI   ScienceOn
33 Watanabe, K., Sato, M., 1998. Plasmid-mediated gene transfer between insect-resident bacteria, Erwinia cloacae, and plant-epiphytic bacteria, Erwinia herbicola, in guts of silkworm larvae. Curr. Microbiol. 37, 352-355.   DOI
34 Yeom, I.H., Jeon, Y.H., Kim, Y., 2012. Molecular diagnosis of plant disease and insect pests. GCO Science Publishing, Seoul, Korea.
35 Yu, H., Wang, Z., Liu, L., Xia, Y., Cao, Y., Yin, Y., 2008. Analysis of the intestinal microflora in Hepialus gonggaensis larvae using 16S rRNA sequences. Curr. Microbiol. 56, 391-396.   DOI
36 Zheng, L., Crippen, T.L., Singh, B., Tarone, A.M., Dowd, S., Yu, Z., Wood, T.K., Tomberlin, J.K., 2013. A survey of bacterial diversity from successive life stages of black solder fly (Diptera:Stratiomyidae) by using 16S rDNA pyrosequencing. J. Med. Entomol. 50, 647-658.   DOI
37 Bensen, H.J., 1990. Microbiological applications. 5th ed., 376 pp. Wm. C. Brown Publishers, IA. USA.
38 Zaidman-Remy, A., Herve, M., Poidevin, M., Pili-Floury, S., Kim, M.S., Blanot, D., Oh, B.H., Ueda, R., Mengin-Lecreulx, D., Lemaitre, B., 2006. The Drosophila amidase PGRPLB modulates the immune response to bacterial infection. Immunity 24, 463-473.   DOI   ScienceOn
39 Dillon, R.J., Dillon, V.M., 2004. The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 49, 71-92.   DOI   ScienceOn
40 Roh, S.W., Nam, Y.D., Chang, H.W., Kim, K.H., Kim, M.S., Ryu, J.H., Kim, S.H., Lee, W.J., Bae, J.W., 2008. Phylogenetic characterization of two novel commensal bacteria involved with innate immune homeostasis in Drosophila melanogaster. Appl. Environ. Microbiol. 74, 6171-6177.   DOI   ScienceOn