Browse > Article
http://dx.doi.org/10.5656/KSAE.2013.08.0.034

Suppression of Gene Expression in the Fifth Instar Larvae of Spodoptera exigua at Low Developmental Threshold Temperature  

Choi, Bongki (Department of Bioresource Sciences, Andong National University)
Park, Youngjin (Department of Bioresource Sciences, Andong National University)
Kim, Yonggyun (Department of Bioresource Sciences, Andong National University)
Publication Information
Korean journal of applied entomology / v.52, no.4, 2013 , pp. 295-304 More about this Journal
Abstract
This study aimed to understand the physiological status of the beet armyworm, Spodoptera exigua at low developmental threshold temperature (LTT) through analysis of gene-expression patterns associated with different functions (metabolism, nervous system, immune, and stress). The estimated LTTs for egg, larval, and pupal developments varied with $5.5{\sim}11.6^{\circ}C$. Larvae were able to develop at the lower temperatures than eggs and pupae. However, the physiological LTT ($15^{\circ}C$) in the fifth instar was much higher than the estimated LTT ($10.3^{\circ}C$). Gene expression patterns estimated by a quantitative RT-PCR (qRT-PCR) indicate that most genes in different functional groups increased their expressions with increase of larval instars. In the same fifth instar, as the treatment temperatures increased, the gene expression levels increased. Moreover, the newly molted fifth instar larvae were different in their gene expression rates according to their previous culturing temperatures. Most gene expressions were suppressed in the fifth instar larvae at the physiological LTT ($15^{\circ}C$). However, the larvae at $15^{\circ}C$ gradually exhibited significant increase in the gene expression rates with rearing time just like those at the higher temperature. These results suggest that S. exigua at LTT exhibits a typical gene expression pattern with maintaining significantly suppressed levels.
Keywords
Spodoptera exigua; Temperature; Growth; Gene expression; Climate change;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Goh, H.G., Lee, S.G. , Lee, B P. , Choi, G.M. and Kim, J.H., 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua. Kor. J. Appl. Entomol. 29: 180-183.   과학기술학회마을
2 Goh, H.G., 1993. Ecological aspects of the beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae), major pest of vegetables. Ph.D. Dissertation. 77 pp. Chungbuk National University, Chungju, Korea.
3 Hong, S.T., Bang, S., Hyun, S., Kang, J., Jeong, K., Paik, D., Chung, J., Kim, J., 2008. cAMP signalling in mushroom bodies modulates temperature preference behavior in Drosophila. Nature 454, 771-775.
4 Jiang, X., Zhai, H., Wang, L., Luo, L., Sappington, T.W., Zhang, L., 2012. Cloning of the heat shock protein 90 and 70 genes from the beet armyworm, Spodoptera exigua, and expression characteristics in relation to thermal stress and development. Cell Stress Chaperons 17, 67-80.   DOI   ScienceOn
5 Kang, J., Kim, J., Choi, K.W., 2011. Novel cytochrome P450, cyp6a17, is required for temperature preference behavior in Drosophila. PLoS One 6, e29800.   DOI   ScienceOn
6 Kim, Y., Kim, K., 1998. Analysis of the isozyme loci of the beet armyworm, Spodoptera exigua (Hubner). Kor. J. Appl. Entomol. 37, 19-22.   과학기술학회마을
7 Kim, Y., Kwon, D., Kim, C., 2000. Effect of fluctuating temperature on development of the beet armyworm, Spodoptera exigua (Hubner). Kor. J. Soil Zool. 5, 119-123.   과학기술학회마을
8 Kim, Y., Song, W., 2000. Effect of thermoperiod and photoperiod on cold tolerance of Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 29, 868-873.   DOI   ScienceOn
9 Chen, S., Fleischer, S.J., Tobin, P.C., Saunders, M.C., 2011. Projecting insect voltinism under high and low greenhouse gas emission conditions. Environ. Entomol. 40, 505-515.   DOI   ScienceOn
10 Feng, H.Q., Wu, K.M., Cheng, D.F., Guo, Y.Y., 2003. Radar observations of the autumn migration of the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae) and other moths in northern China. Bull. Entomol. Res. 93, 115-124.
11 Fey, R.E., Carranza, R.L., 1973. Cotton pests: overwintering of three lepidopterous species in Arizona. J. Econ. Entomol. 66, 657-659.   DOI
12 Garrity, P.A., Goodman, M.B., Samuel, A.D., Sengupta, P., 2010. Running hot and cold: behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in C. elegans and Drosophila. Genes Dev. 24, 2365-2382.   DOI   ScienceOn
13 Lee, S.D., 1993. Effects of host plants and temperature on the development of beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). M.S. Thesis. 36 pp. Gyeongsang National University, Jinju, Korea.
14 Lemaitre, B., Hoffmann, J., 2007. The host defense of Drosophila melanogaster. Annu. Rev. Entomol. 25, 697-743.
15 Linquist, S., 1986. The heat-shock response. Annu. Rev. Biochem. 55, 1151-1191.   DOI   ScienceOn
16 Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-${\Delta}{\Delta}$ CT method. Methods 25, 402-408.   DOI   ScienceOn
17 Mikkola, K., 1970. The interpretation of long-range migrations of Spodoptera exigua Hb (Lepidoptera: Noctuidae). J. Anim. Ecol. 39, 593-598.   DOI   ScienceOn
18 Mirth, C., Riddiford, L.M., 2007. Size assessment and growth control: how adult size is determined in insects. Bioassays 29, 344-355.   DOI   ScienceOn
19 Mirth, C., Truman, J.W., Riddiford, L.M., 2005. The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster. Curr. Biol. 15, 1796-1807.   DOI   ScienceOn
20 Muturi, E.J., Nyakeriga, A., Blackshear, M., 2012. Temperaturemediated differential expression of immune and stress-related genes in Aedes aegypti larvae. J. Am. Mosq. Control Assoc. 28, 79-83.   DOI   ScienceOn
21 Neely, G.G., Keene, A.C., Duchek, P., Chang, E.C., Wang, Q.P., Aksoy, Y.A., Rosenzweig, M., Costigan, M., Woolf, C.J., Garrity, P.A., Penninger, J.M., 2011. TrpA1 regulates thermal nociception in Drosophila. PLoS One 6, e24343.   DOI   ScienceOn
22 Nijhout, H.F., 2003. The control of body size in insects. Dev. Biol. 261, 1-9.   DOI   ScienceOn
23 Xu, Q., Zou, Q., Zheng, H., Zhang, F., Tang, B., Wang, S., 2011. Three heat shock proteins from Spodoptera exigua: gene cloning, characterization and comparative stress response during heat and cold shocks. Comp. Biochem. Physiol. 159B, 92-102.
24 Ritossa, F., 1962. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18, 571-573.   DOI   ScienceOn
25 SAS Institute, Inc. 1989. SAS/STAT User's Guide, Release 6.03, Ed. Cary, NC, USA.
26 Song, W., Kim, Y., Cho, J., Kim, H., Lee, J., 1997. Physiological factors affecting rapid cold hardening of the beet armyworm, Spodoptera exigua (Hübner). Kor. J. Appl. Entomol. 36, 249-255.   과학기술학회마을
27 Zheng, X., Cheng, W., Wang, X., Lei, C., 2011. Enhancement of supercooling capacity and survival by cold acclimation, rapid cold and heat hardening in Spodoptera exigua. Cryobiology 63, 164-169   DOI   ScienceOn
28 Zheng, X.L., Wang, P., Cheng, W.J., Wang, X.P., Lei, C.L., 2012. Projecting overwintering regions of the beet armyworm. Spodoptera exigua in China using the CLIMEX model. J. Insect Sci. 12, 13.