Browse > Article
http://dx.doi.org/10.5656/KSAE.2012.05.0.029

Analysis of Physiological Alterations in Development and Mating Behavior by Ultrasound Treatment in the Beet Armyworm, Spodoptera exigua  

Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University)
Son, Ye-Rim (Department of Bioresource Sciences, Andong National University)
Park, Bok-Ri (Department of Bioresource Sciences, Andong National University)
Publication Information
Korean journal of applied entomology / v.51, no.3, 2012 , pp. 223-230 More about this Journal
Abstract
Some high frequency sounds alter physiological processes of the beet armyworm, Spodoptera exigua. This study investigated the effect of ultrasound (${\geq}$ 20 kHz) on larval feeding, pupal development, and adult mating behavior of S. exigua. Ultrasound suppressed feeding behavior of fifth instar larvae, and 30 or 45 kHz treatment inhibited more than 50% of feeding activity. Larvae treated with ultrasound exhibited alterations in major nutrient compositions in the hemolymph plasma. Plasma protein levels decreased with an increase in ultrasound frequency. In contrast, sugar levels increased with an increase in ultrasound frequency. Lipid levels increased with an increase in ultrasound frequency up to 30 kHz and then decreased at treatments > 30 kHz. Hemocytes, the fat body, and epidermis expressed three heat shock proteins and apolipophorin III. Ultrasound treatment markedly inhibited expression of some stress-related genes. Ultrasound treatment also inhibited S. exigua pupal development by extending the pupal developmental period and preventing adult emergence. Last, ultrasound treatment significantly inhibited adult mating behavior, which resulted in a significant decrease in female fecundity. These results show that ultrasound is a physiological stress to S. exigua.
Keywords
Ultrasound; Stress; Feeding; Mating; Spodoptera exigua;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Schulze, W. and J. Schul. 2001. Ultrasound avoidance behaviour in the bush cricket Tettigonia viridissima (Orthoptera: Tettigoniidae). J. Exp. Biol. 204: 733-740.
2 Seok, J., T. Kang and Y. Kim. 2010. Sound stress induces developmental alterations and enhances insecticide susceptibility in the green peach aphid, Myzus persicae. Kor. J. Pestic. Sci. 14: 415-420.
3 Sismondo, E. 1980. Physical characteristics of the drumming of Meconema thalassinum. J. Insect Physiol. 26: 209-212.   DOI   ScienceOn
4 Son, Y., J. Hwang and Y. Kim. 2012. Functional study of the gene encoding apolipophorin III in development and immune responses in the beet armyworm, Spodoptera exigua. J. Asia Pac. Entomol. 15: 106-112.   DOI
5 Stephen, R.O. and J.C. Hartley. 1995. Sound production in crickets. J. Exp. Biol. 198: 2139-2152.
6 Velki, M., D. Kodrik, J. Vecera, B.K. Hackenberger and R. Socha. 2011. Oxidative stress elicited by insecticides: a role for the adipokinetic hormone. Gen. Comp. Endocrinol. 172: 77-84.   DOI
7 Walter, S. and J. Buchner. 2002. Molecular chaperons-cellular machines for protein folding. Angew. Chem. Int. Ed. 41: 1098-1113.   DOI   ScienceOn
8 Weers, P.M.M. and R.O. Ryan. 2006. Apolipophorin III: role model apolipophorin. Insect Biochem. Mol. Biol. 36: 231-240.   DOI
9 Xu, Q., Q. Zou, H. Zheng, F. Zhang, B. Tang and S. Wang. 2011. Three heat shock proteins from Spodoptera exigua: Gene cloning, characterization and comparative stress response during heat and cold shocks. Comp. Biochem. Physiol. B 159: 92-102.
10 Young, D. and H.C. Bennet-Clark. 1995. The role of the tymbal in cicada sound production. J. Exp. Biol. 198: 1001-1019.
11 Jang, Y. 2011. Insect communication: concepts, channels and contexts. Kor. J. Appl. Entomol. 50: 383-393.   DOI
12 Khasar, S.G., P.G. Green and J.D. Leine. 2005. Repeated sound stress enhances inflammatory pain in the rat. Pain 116: 79-86.   DOI
13 Kim, J. 2012. Functional genomic analysis of antimetamorphic factors in a polydnavirus, Cotesia plutellae bracovirus. MS thesis. Andong National University, Andong, Korea.
14 Park, J., J. Seok, S.V. Prasad and Y. Kim. 2011a. Sound stress alters physiological processes in digestion and immunity and enhances insecticidal susceptibility of Spodoptera exigua. Kor. J. Appl. Entomol. 50: 39-46.   DOI
15 Kim, Y. and Y. Son. 2006. Parasitism of Cotesia plutellae alters morphological and biochemical characters of diamondback moth, Plutella xylostella. J. Asia-Pac. Entomol. 9: 37-42.   DOI
16 McIver, S.B. 1985. Mechanoreception. pp. 71-132. In Comprehensive insect physiology, biochemistry and pharmacology, vol. 6, eds. by G.A. Kerkut and L.I. Gilbert. Pergamon Press, Oxford, UK.
17 Miller, L.A. and A. Surlykke. 2001. How some insects detect and avoid being eaten by bats: tactics and countertactics of prey and predator. BioScience. 51: 570-581.   DOI
18 Park, J., Prasad, S.V. and Y. Kim. 2011b. Effects of sound stress on physiological processes of the American leafminer, Liriomyza trifolii, and proteomic analysis. Kor. J. Appl. Entomol. 50: 131-139.   DOI   ScienceOn
19 Payne, R.S., K.D. Roeder and J. Wallman. 1966. Directional sensitivity of the ears of noctuid moths. J. Exp. Biol. 44: 17-31.
20 Roeder, K.D. 1967. Turning tendency of moths exposed to ultrasound while in stationary flight. J. Insect Physiol. 13: 873-880.   DOI
21 SAS Institute. 1989. SAS/STAT User's Guide, Release 6.03, Ed. Cary, NC, USA.
22 Gäde, G., K.H. Hoffmann and J.H. Spring. 1997. Hormonal regulation in insects: facts, gaps and future direction. Physiol. Rev. 77: 963-1032.   DOI
23 Adamo, S.A., J.L. Roberts, R.H. Easy and N.W. Ross. 2008. Competition between immune function and lipid transport for the protein apolipophorin III leads to stress-induced immunosuppression in crickets. J. Exp. Biol. 211: 531-538.   DOI
24 Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 71: 248-254.
25 Feder, M.E. and G.E. Hofmann. 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61: 243-282.   DOI   ScienceOn
26 Goh, H.G., S.G. Lee, B.P. Lee, G.M. Choi and J.H. Kim. 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua. Kor. J. Appl. Entomol. 29: 180-183.
27 Halwani, A.E. and G.B. Dunphy. 1999. Apolipophorin-III in Galleria mellonella potentiates hemolymph lytic activity. Dev. Comp. Immunol. 23: 563-570.   DOI
28 Halwani, A.E., D.F. Niven and G.B. Dunphy. 2000. Apolipophorin -III and the interactions of lipoteichoic acid with the immediate immune responses of Galleria mellonella. J. Invertebr. Pathol. 76: 233-241.   DOI   ScienceOn
29 Hartl, F.U. and M. Hayar-Hartl. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852-1858.   DOI   ScienceOn
30 Haskell, P.T. 1957. Stridulation and associated behaviour in certain Orthoptera. I. Analysis of the stridulation of, and behaviour between males. Anim. Behav. 5: 139-148.   DOI