Browse > Article
http://dx.doi.org/10.5656/KSAE.2012.01.1.058

Effect of Harvest Time and Infective Juvenile Size of the Entomopathogenic Nematode, Steinernema arenarium, on Pathogenicity, Development, and Propagation  

Han, Gun-Yeong (Division of Applied Life Science (BK21), Department of Applied Biology, Institute of Agriculture and Life Sciences, Gyeongsang National University)
Lee, Dong-Woon (Major of Applied Biology, School of Ecology, Environment and Tourism, Kyungpook National University)
Choo, Young-Moo (Department of Entomology, University of California)
Choo, Ho-Yul (Department of Applied Biology, Institute of Agriculture and life Sciences, Gyeongsang National University)
Publication Information
Korean journal of applied entomology / v.51, no.1, 2012 , pp. 9-18 More about this Journal
Abstract
The size of infective $Steinernema$ $arenarium$ juveniles is variable and ranges from 724 to 1408 ${\mu}m$. Effects of harvest time and infective juvenile size on pathogenicity, development, and reproduction were examined in the last instar of the great wax moth, $Galleria$ $mellonella$. Harvest time of infective juveniles (IJs) of $S.$ $arenarium$ affected pathogenicity. IJs harvested at the 10th day from trapping were more pathogenic than those harvested the 3rd day from trapping. Mortality of $G$. mellonella also depending on harvest time, $i.e$, 100% died within 48h when IJs were harvested at the 10th day, without relation to size. However, mortality was 40% in the small size group (SSG) compared with 18% in the large size group (LSG) within 48h when IJs were harvested at the 3rd day. Establishment of $S.$ $arenarium$ within the host was different depending on IJ size. The number of established IJs was 1.8 in the SSG, 3.3 in the LSG, and 3.2 in the mixed size group (MSG) when IJs were harvested at the 3rd day, and 5.3 in the SSG, 7.4 in the LSG, and 7.6 in the MSG when IJs were harvested at the 10th day. The length of the female adult was 7,070.5 ${\mu}m$ in the SSG and 7,893.9 ${\mu}m$ in the LSG and that of the male was 1,460.5 ${\mu}m$ in the SSG and 1,688.2 ${\mu}m$ in the LSG when IJs were harvested at the 3rd day. The length of the female adult was 7,573.6 ${\mu}m$ in the SSG and 8,305.4 ${\mu}m$ in the LSG and that of the male adult was 1,733.4 ${\mu}m$ in the SSG and 1,794.4 ${\mu}m$ in the LSG when IJs were harvested at the 10th day. Harvest time and size of IJs did not influence numbers of progeny or size of IJS.
Keywords
Infective juvenile size; Harvest time; Pathogenicity; Progeny; Steinernema arenarium;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Smith, R.J., A. Hines, S. Richmond, M. Merrick, A. Drew and R. Fargo. 2000. Altitudinal variation in body size and population density of Nicrophorus investigator (Coleoptera: Silphidae). Environ. Entomol. 29: 290-298.   DOI
2 Trager, M.D. and J.C. Daniels. 2011. Size effects on mating and egg production in the Miami blue butterfly. J. Insect Behav. 24: 34-43.   DOI
3 White, G.F. 1927. A method for obtaining infective nematode larvae from cultures. Science 66: 302-303.
4 Woodring, J.L. and H.K. Kaya. 1988. Steinernematidae and Heterorhabditidae nematodes: a handbook of techniques. Southern Coop. Ser. Bull. 331, Alkansas Agri. Exp. Stn. Fayetteville, AR. 29pp.
5 Zervos, S., S.C. Johnson and J.M. Webster. 1991. Effect of temperature and inocolum size on reproduction and development of Heterorhabditis heliothidis and Steinernema glaseri (Nematoda: Rhabditidae) in Galleria mellonella. Can. J. Zool. 69: 1261-1264.   DOI
6 Liu, Q.Z. and I. Glazer. 2000. Desiccation survival of entomopathogenic nematodes of the genus Heterorhabditis. Phytoparasitica 28: 331-340.   DOI
7 Mason, J.M. and W.M. Homonick. 1995. The effect of temperature on infection, development and reproduction of Heterorhabditis. J. Helminthol. 69: 337-345.   DOI   ScienceOn
8 O'Neill, K.M. 1985. Egg size, prey size, and sexual size dimorphism in digger wasps (Hymenoptera: Sphecidae). Can. J. Zool. 63: 2187-2193.   DOI
9 Mracek, Z., S. Becvar, P. Kindlmann and J. Jersakova. 2005. Habitat preference for entomopathogenic nematodes, their insect hosts and new faunistic records for the Czech Republic. Biological Control 34: 27-37.   DOI
10 Nickle, W.R. and M. Shapiro. 1994. Effects of eight brighteners as solar radiation protectants for Steinernema carpocapsae All strain. J. Nematol. 26: 782-784.
11 Poinar, G.O., Jr 1986. Entomopathogenic nematodes. In: Franz, J.M. (ed.), Biological plant and health protection. Fischer Verleg, Stuttgart, Germany, pp. 95-121.
12 Poinar, G.O., Jr. 1990. Taxonomy and biology of Steinnernematidae and Heterohabditidae. In: In: Gaugler, R. and H.K. Kaya (eds.), Entomopathogenic nematodes in biological control. Boca Raton. FL. USA. CRC Press. Boca Raton, Florida, pp.22-61.
13 Roff, D. 1992. The evolution of life histories: theory and analysis. Chapman and Hall, New York.
14 SAS Institute. 1999. SAS 8 for Windows. Cary. NC.
15 Schirocki, A.C. and N.G.M. Hague. 1997. The effect of selective culture of Steinernema feltiae at low temperature on establishment, pathogenicity, reproduction and size of infective juveniles. Nematologica 43: 481-490.   DOI
16 Smith, R.J. 2002. Effect of larval body size on overwinter survival and emerging adult size in the burying beetle, Nicrophorus investigator. Can. J. Zool. 80: 1588-1593.   DOI
17 Hudson, W.G. and K.B. Nguyen. 1989. Effects of soil moisture, exposure time, nematode age, and nematode density on laboratory infection of Scapteriscus vicinus and S. acletus (Orthoptera: Gryllotalpidae) by Neoaplectana sp. (Rhabditida: Steinernematidae). Environ. Entomol. 18: 719-722.   DOI
18 Kaya, H.K. and R. Gaugler. 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38: 181-206.   DOI
19 Ishibashi, N. 2002. Behaviour of entomopathogenic nematodes. In: Lee, D.L. (ed.), The biology of nematodes. Taylor & Francis. London. pp.511-520.
20 Kakouli-Duarte, T. and N.G.M. Hague. 1999. Infection, development, and reproduction of the entomopathogenic nematode Steinernema arenarium (Nematoda: Steinernematidae) in the black vine weevil Otiorhynchus sulcatus (Coleoptera: Curculionidae). Nematology 1: 149-156.   DOI
21 Koppenhofer, A.M., H.K. Kaya and S.P. Taormino. 1995. Infectivity of entomopathogenic nematodes (Rhabditida: Steinernematidae) at different soil depths and moistures. J. Invertebr. Pathol. 65: 193-199.   DOI
22 Kozodoi, E.M. 1984. A new entomopathogenic nematode Neoaplectana anomali sp. n. (Rhabditida: Steinernematidae) and observation on its biology. Zoological Journal 63: 1605-1609.
23 Kuhlmann, U. and W.A.C.M. Der Burgt. 1998 Possibilities for biological control of the western corn rootworm, Diabrotica virgifera virgifera LeConte, in Central Europe. Biocontrol News and Information 19: 59-68.
24 Lee, S. W., D. W. Lee and H. Y. Choo. 2007. Development of economical artificial diets for greater wax moth, Galleria mellonella (L.). Korean J. Appl. Entomol. 46: 385-392.   DOI
25 Lewis, E.E., J.F. Campbell and R. Gaugler. 1997. The effect of aging on the foraging behaviour of Steinernema carpocapsae (Rhabditida: Steinernematidae). Nematologica 43: 1-8.   DOI
26 Chen, S., X. Han and M. Moens. 2003b. Effect of temperature on the pathogenicity of entomopathogenic nematodes (Steinernema and Heterorhabditis spp.) to Delia radicum. Biocontrol 48 : 713-724.   DOI
27 Glazer, I. 1992. Invasion rate as a measure of infectivity of steinernematid and heterorhabditid nematodes to insects. J. Invertebr. Pathol. 59: 90-94.   DOI
28 Garcia del Pino F. and M. Jove. 2005. Compatibility of entomopathogenic nematodes with fipronil. J. Helminthol. 79: 333-337.   DOI
29 Gaugler, R. 2001. Entomopathgenic nematology. CABI Publishing. 1: 14-15.
30 Georgis, R. and N.G.M. Hague. 1981. A neoaplectanid nematode in the web-spinning larch sawfly Cephalcia lariciphila (Hymenoptera: Pamphiliidae). Ann. Appl. Biol. 99: 171-177.   DOI
31 Gouge, D.H. and N.G.M. Hague. 1995. The susceptibility of different species of sciarid flies to entomopathegenic nematodes. J. Helminthol. 69: 313-318.   DOI   ScienceOn
32 Grewal, P.S., S. Selvan, E.E. Lewis and R. Gaugler. 1993. Male insect parasitic nematodes, a colonizing sex. Experimentia 49: 605-608.   DOI
33 Han, G.Y., D.W. Lee and H.Y. Choo. 2010. Effect of inoculation concentration on pathogenicity, development, propagation and body length of entomopathogenic nematode, Steinernema arenarium (Nematoda: Steinernematidae). Kor. J. Appl. Entomol. 49: 61-67.   DOI
34 Honek, A. 1993. Intraspecific variation in body size and fecundity in insects-a general relationship. Oikos 66: 483-492.   DOI
35 Hang, D.T., H.Y. Choo, D.W. Lee, S.M. Lee, H.K. Kaya and C.G. Park. 2007. Temperature effects on Korean entomopathogenic nematodes, Steinernema glaseri and S. longicaudum and their symbiotic bacteria. Journal of Microbiology and Biotechnology 17: 420-427.
36 Boemare, N., C. Laumond and H. Mauleon. 1996. The entomopathogenic nematode-bacterium complex: biology, life cycle, and vertebrate safety. Biocontrol Sci. Technol. 6: 333-345.   DOI   ScienceOn
37 Akhurst. R.J. and N.E. Boemare. 1990. Biology and taxonomy of Xenorhabdus. In: Gaugler, R. and H.K. Kaya (eds.), Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, Florida, 75-90 pp.
38 Artyukhovsky, A.K. 1967. Neoaplectana arenarium nov. sp. (Steinernematidae: Nematoda) inducing nematode disease in chafers of the Voronezh region. Trudy Voronezbskogo Gosudarstvennogo Zapovednika 15: 94-100.
39 Bedding, R.A. and A.S. Molyneux. 1982. Penetration of insect cuticle juvenile of Heterorhabditis spp. (Heterorhabditidae: Nematoda). Nematologica 28: 354-359.   DOI
40 Brown, M. and R. Gaugler. 1997. Temperature and humidity influence emergence and survival of entomopathogenic nematodes. Nematologica 43: 363-376.   DOI
41 Calder, W.A. 1983. Body size, mortality and longevity. J. Theor. Biol. 102: 135-144.   DOI
42 Chen, S., X. Han and M. Moens. 2003a. Biological control of Delia radicum (Diptera: Anthomyiidae) with entomopathogenic nematodes. Appl. Entomol. Zool. 38: 441-448.   DOI