Browse > Article
http://dx.doi.org/10.5656/KSAE.2010.49.3.211

Comparison of Cuticular Hydrocarbons of the Pine Sawyer (Monochamus saltuarius), Japanese Pine Sawyer (Monochamus alternatus) and Oak Longicorn Beetle (Moechotypa diphysis)  

Lee, Jeong-Eun (Dept. of Plant Medicine, Coll. of Agri. Life and Environ. Sci., Chungbuk National University)
Kim, Eun-Hee (Dept. of Plant Medicine, Coll. of Agri. Life and Environ. Sci., Chungbuk National University)
Yoon, Chang-Mann (Dept. of Plant Medicine, Coll. of Agri. Life and Environ. Sci., Chungbuk National University)
Kim, Gil-Hah (Dept. of Plant Medicine, Coll. of Agri. Life and Environ. Sci., Chungbuk National University)
Publication Information
Korean journal of applied entomology / v.49, no.3, 2010 , pp. 211-218 More about this Journal
Abstract
Cuticular hydrocarbons (CHCs) of the pine sawyer (Monochamus saltuarius), Japanese pine sawyer (M. alternatus) and oak longicorn beetle (Moechotypa diphysis) were analyzed by GC, GC-MS and compared. Monochamus beetles are typical vectors of pine wilt disease but Moechotypa diphysis, which belongs to the same family, is not. They possess different CHCs in carbon number: 23-25 in M. saltuarius, 25-32 in M. alternatus, and 23-29 in M. diphysis. In comparison to inter-species, these three species of adult beetles have different numbers and chains of constituents of CHCs. In comparison between male and female in intra-species, the quantities of CHCs show the difference but constituents are not. Major constituent of M. saltuarius were analyzed as n-pentacosane > n-nonacosane > n-heptacosane; those of M. alternatus were n-nonacosene > n-pentacosane > n-nonacosane; and those of M. diphysis were n-heptacosane > 13-methylheptacosane > 3-methylheptacosane. From the body surface, most saturated carbohydrates of 3 species beetles are composed of n-alkane (40.2 - 65.7%) and followed by olefines > monomethylalkanes that one or two double bonds in M. saltuarius and M. alternatus. Otherwise, M. diphysis have the difference in order of monomethylalkanes > olefins.
Keywords
Cuticular hydrocarbons; Monochamus saltuarius; Monochamus alternatus; Moechotypa diphysis; Pine wilt disease; Vector;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Sledge, M.F., I. Trinca, A. Massolo, F. Boscaro and S. Turillazzi. 2004. Variation in cuticular hydrocarbon signatures, hormonal correlates and establishment of reproductive dominance in a polistine wasp. J. Insect Physiol. 50: 73-78.   DOI
2 Smith, A.A., B. Holldober and J. Liebig. 2009. Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Current Biol. 19: 78-81.   DOI
3 Torres, C.W., M. Brandt and N.D. Tsutsui. 2007. The role of cuticular hydrocarbons as chemical cues for nestmate recognition in the invasive Argentine ant (Linepithema humile). Insect Sociaux 54: 363-373.   DOI
4 Urech, R., G.W. Brown, C.J. Moore and P.E. Green. 2005. Cuticular hydrocarbons of buffalo fly, Haematobia exigua and chemotaxonomic differentiation from horn fly, H irritans. J. Chem. Ecol. 31: 2451-2461.   DOI
5 Lee, C.J., J.Y. Shen, S.C. Park and J.H. Shim. 2003. Chemical analysis of cuticular hydrocarbons in Apis melifera L. and A. cerana F. Korean J. Appl. Entomol. 42: 9-13.
6 Lockey, K.H. 1988. Lipids of the insect cuticle: origin, composition and function. Comp. Biochem. Physiol. 89B: 595-645.
7 Lorenzi, M.C., M.F. Sledge, P. Laiolo, E. Sturlini and S. Turillazzi. 2004. Cuticular hydrocarbon dynamics in young adult Polistes dominulus (Hymenoptera: Vespidae) and the role of linear hydrocarbons in nestmate recognition systems. J. Insect Physiol. 50: 935-941.   DOI
8 Lucas, C., D.B. Pho, J.M. Jallon and D. Fresneau. 2005. Role of cuticular hydrocarbons in the chemical recognition between ant species in the Pachycondyla villosa species complex. J. Insect Physiol. 51: 1148-1157.   DOI
9 Nelson, D.R. and L.D. Charlet. 2003. Cuticular hydrocarbons of the sunflower beetle, Zygogramma exclamationis. Comp. Biochem. Physiol. B. 135: 273-284.   DOI
10 Nelson, D.R. 1993. Methyl-branched lipids in insects, pp. 271-315. In Insect lipids: Chemistry, biochemistry and biology, eds. by D. W. Stanley-Samuelson and D. R. Nelson eds. University of Nebraska Press, Lincoln, Nebraska.
11 Nunes, T.M., I.C.C. Turatti, S. Mateus, F.S. Nascimento, N.P. Lopes and R. Zucchi. 2009. Cuticular hydrocarbons in the stingless bee Schwarziana quadripunctata (Hymenoptera, Apidae, Meliponini): differences between colonies, castes and age. Gen. Mol. Res. 8: 589-595.   DOI
12 Page, M., L.J. Nelson, G.J. Blomquist and S.J. Seybold. 1997. Cuticular hydrocarbons as chemotaxonomic characters of pine engravcr beetles (lps spp.) in the grandicollis subgeneric group. J. Chem. Ecol. 23: 1053-1099.   DOI
13 Said, I., G. Costagliola, I. Leoncini and C. Rivault. 2005. Cuticular hydrocarbon profiles and aggregation in four Periplaneta species (Insecta: Dictyoptera). J. Insect Physiol. 51: 995-1003.   DOI
14 Gamboa, G.J., T.A. Grudzien, K.E. Espelie and E.A. Bura. 1996. Kin recognition pheromones in social wasps: combining chemical and behavioural evidence. Anim. Behav. 51 : 625-629.   DOI
15 Gamboa, G.J. 2004. Kin recognition in eusocial wasps. Ann. Zool. Fennici 41 : 789-808.
16 Ginzel, M.D., G.J. Blomquist, J.G. Millar and L.M. Hanks. 2003. Role of contact pheromones in mate recognition in Xylotrechus colonus. J. Chem. Ecol. 29: 533-545.   DOI
17 Howard, R.W. 1993. Cuticular hydrocarbons and chemical communication. pp. 179-226. In Insect lipids: chemistry, biochemistry and biology, eds. by D.W. Stanley-Samuelson and D.R. Nelson, University of Nebraska Press, Lincoln, Nebraska
18 Kim, G.H., J. Takabayashi, S. Takahashi and K. Tabata. 1992. Function of pheromones in mating behavior of the Japanese pine sawyer beetle, Monochamus alternatus Hope. Appl. Entomol. Zool. 27: 525-535.
19 Jurenka, R.A. and M. Subchev. 2000. Identification of cuticular hydrocarbons and the alkene precursor to the pheromone in hemolymph of the female gypsy moth, Lymantria dispar. Arch. Insect Biochem. Physiol. 43: 108-115.   DOI
20 Kaib, M., P. Jmhasly, L. Wilfert, W. Durka, S. Franke, W. Francke, R.H. Leuthold and R. Brandl. 2004. Cuticular hydrocarbons and aggression in the termite Macrotermes subhyalinus. J. Chem. Ecol. 30: 365-385.   DOI
21 Kim, J.S., M.K. Kim, J.H. Han, C. Yoon, K.S. Choi, S.C. Shin and G.H. Kim. 2006. Possible presence of pheromone in mating behavior of the pine sawyer Monochamus saltuarius Gebler (Coleoptera: Cerambycidae). J. Asia-Pac. Entomol. 9: 347-352.   DOI
22 Liebig, J., C. Peeters, N.J. Oldham, C. Markastadter and B. Holldobler. 2000. Are variation in cuticular hydrocarbons of queens and worker a reliable signal of fertility in the ant Harpegnathos saltator? PNAS 97: 4124-4131.   DOI
23 Brown, W.V., H.A. Rose, M.J. Lacey and D. Wright. 2000. The cuticular hydrocarons of the giant soil-burrowing cockroach Macropanesthia rhinoceros Saussure (Blattodea: Blaberidae: Geoscapheinae): analysis with respect to age, sex and location Comp. Biochem. Physiol. 127B: 261-277.
24 Buckley, S.H., T. Tregenza and R.K. Butlin. 1997. Speciation and signal trait genetics. Trends Ecol. Evol. 12: 299-301.   DOI
25 Carlson, D.A. and R.J. Brenner. 1988. Hydrocarbon-based discrimination of three North American Blattella cockroach species (Orthoptera: Blattellidae) using gas chromatography. Ann. Entomol. Soc. Am. 81: 711-723.   DOI
26 Dani, F.R., G.R. Jones, S. Destri, S.H. Spencer and S. Turillazzi. 2001. Deciphering the recognition signature within the cuticular chemical profile of paper wasps. Anim. Behav. 62: 165-171.   DOI
27 Cobb, M. and J.M. Jallon. 1990. Pheromones, mate recognition and courtship stimulation in the Drosophila melanogaster species sub-group. Anim. Behav. 39: 1058-1067.   DOI
28 Coyne, J.A., A.P. Crittenden and K. Mah. 1994. Genetics of a pheromone difference contributing to reproductive isolation in Drosophila. Science 265: 1461-1464.   DOI
29 Coyne, J.A. and B. Charlesworth. 1997. Genetics of a pheromonal difference affecting sexual isolation between Drosophila mauritiana and D. sechellia. Evolution 145: 1015-1030.
30 Everaerts, C., J-P. Farine, M. Cobb, and J-F. Ferveur. 2010. Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles. PLoS ONE 5: e9607. doi: 10.1371/journal. pone.0009607.   DOI
31 Fan, Y., D. Eliyahu and C. Schal. 2008. Curicular hydrocarbons as maternal provisions in embryos and nymphs of the cockroach provisions in embryos and nymphs of the cockroach Blattella germanica. J. Exp. Biol. 211: 548-554.   DOI
32 Akino, T, 2006. Cuticular hydrocarbons of Formica truncorum (Hymenoptera: Formicidae): Description of new very long chained hydrocarbon components. Appl. Entomol. Zool. 41: 667-677.   DOI
33 Boroczky, K., K.C. Park, R.D. Minard, T.H. Jones, T.C. Baker and J.H. Tumlinson. 2008. Differences in cuticular lipid composition of the antennae of Helicoverpa zea, Heliothis virescens and Manduca sexta. J. Insect Physiol. 54: 1385-1391.   DOI
34 Barbour, J.D., E.S. Lacey and L.M. Hanks. 2007. Cuticular hydrocarbons mediate mate recognition in a species of longhorned beetle (Coleoptera: Cerambycidae) of the primitive subfamily prioninae. Ann. Entomol. Soc. Am. 100: 333-338.   DOI
35 Bernier, U.R., D.A. Carlson and C.J. Geden. 1998. Gas chromatography/mass spectrometry analysis of the cuticular hydrocarbons from parasitic wasps of the genus Musicidifurax. J. Am. Soc. Mass Spectrom. 9: 320-332.   DOI
36 Blomquist, G.J., D.R. Nelson and M. de Renobales. 1987. Chemistry, biochemistry and physiology of insect cuticular lipids. Arch. Insect Biochem. Physiol. 6: 227-265.   DOI
37 Brown, W.V., H.A. Rose and M.J. Lacey. 1997. The cuticular hydrocarbons of the soil burrowing cockroach Geoscapheus dilatatus (Saussure) (Blattodea: Blaberidae: Geoscapheinae) indicate species dimorphism. Comp. Biochem. Physiol. 118B: 549-562.