Browse > Article
http://dx.doi.org/10.5656/KSAE.2009.48.3.385

Two Entomopathogenic Bacteria, Xenorhabdus nematophila K1 and Photorhabdus temperata subsp. temperata ANU101 Secrete Factors Enhancing Bt Pathogenicity against the Diamondback Moth, Plutella xylostella  

Seo, Sam-Yeol (Plant Medicine, School of Bioresource Sciences, Andong National University)
Kim, Yong-Gyun (Plant Medicine, School of Bioresource Sciences, Andong National University)
Publication Information
Korean journal of applied entomology / v.48, no.3, 2009 , pp. 385-392 More about this Journal
Abstract
Two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata, are known to be potent against the diamondback moth, Plutella xylostella, when the bacteria are injected into the hemocoel. This study investigated any pathogenic effect of their culture broth on P. xylostella by oral administration. Only culture broth of both bacterial species did not give enough pathogenic effects by the oral administration. However, when the culture broth was orally treated together with Bacillus thuringiensis (Bt), both cell-free culture broth significantly enhanced Bt pathogenicity against the 3rd instar larvae of P. xylostella. The culture broth was then fractionated into hexane, ethyl acetate, and aqueous extracts. Most synergistic effect on Bt pathogenicity was found in ethyl acetate extracts of both bacterial species. Thin layer chromatography of these extracts clearly showed that ethyl acetate extracts of both bacterial culture broths possessed metabolites that were different to those of hexane and aqueous extracts. These results suggest that the both entomopathogenic bacteria produce and secrete different factors to give significant synergistic effect on Bt pathogenicity.
Keywords
Xenorhabdus nematophila; Photorhabdus temperata subsp. temperata; Plutella xylostella; Bt; Pathogenicity; Immunity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Jenkins, J.I. and D.H. Dean. 2000, Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. pp. 33-54. In Genetic engineering: principles and methods, eds. by K. Setlow. vol. 22, Plenum, New York
2 Jiang, H. and M.R. Kanost. 2000, The clip-domain family of serine proteinases in arthropods, Insect Biochem. Mol. BioI. 30:95-105   DOI   ScienceOn
3 Kwon, B. and Y. Kim. 2008, Benzylideneacetone, an immunosuppressant, enhances virulence of Bacillus thuringiensis against beet armyworm (Lepidoptera: Noctuidae), J. Econ. Entomol.101: 36-41   DOI   ScienceOn
4 Oppert, B., K.1. Krammer, R.W. Beeman, D. Johnson and W.H. McGaughey. 1997, Proteinase-mediated insect resistance to Bacillus thuringiensis toxins, J. BioI. Chern. 272: 23473-23476
5 Park, Y., Y. Kim and Y. Yi. 1999, Identification and characterization of a symbiotic bacterium associated with Steinernema carpocapsae in Korea, J. Asia Pac. Entomol. 2:105-111   DOI   ScienceOn
6 Park, Y. and Y. Kim. 2003, Xenorhabdus nematophilus inhibits p-bromophenacyl bromide (BPB)-sensitive PLA2 of Spodoptera exigua, Arch. Insect Biochem. Physiol. 54: 134-142   DOI   ScienceOn
7 Park, Y. and Y. Kim. 2007, An entomopathogenic bacterium, Xenorhabdus nematophila, induces insect immunosuppression by inhibiting phospholipase A$A_{2}$ . J. Basic and Life Res. Sci. 7:31-37
8 SAS Institute, Inc. 1989, SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C
9 Silva, C.P., N.R. Waterfield, P.J. Dabom, P. Dean, T. Chilver, C.P. Au, S. Sharma, U. Potter, S.E. Reynolds and R.H. ffrenchConstant. 2002, Bacterial infection of a model insect: Photorhabdus luminescens and Manduca sexta, Cell. Microbiol. 6:329-339
10 Tabashnik, B.E., R.T. Roush, E.D. Earle and A.M. Shelton. 2000, Resistance to Bt toxins. Science 287: 42   PUBMED
11 Luo, H., W.P. Hanratty and C.R. Dearolf. 1995, An amino acid substitution in the Drosophila hop Tum-I Jak kinase causes leukemia-like hematopoietic defects, EMBO J. 14: 1412-1420   PUBMED
12 Gassmann, AJ., lA. Fabrick, M.S. Sisterson, E.R. Hannon, S.P. Stock, Y. Carriere and B.E. Rabashnik. 2009, Effects of pink bollworm resistance to Bacillus thuringiensis on phenoloxidase activity and susceptibility to entomopathogenic nematodes, J. Econ. Entomol. 102: 1224-1232   DOI   ScienceOn
13 Kaya, H.K. and R. Gaugler. 1993, Entomopathogenic nematodes, Annu. Rev. Entomol. 38: 181-206   DOI   ScienceOn
14 Rahman, M.M, H.L.S. Roberts, M. Sarjan, S. Asgari and O. Schmidt. 2004, Induction and transmission of Bacillus thuringiensis tolerance in the flour moth, Ephestia kuehniella, Proc. Natl.Acad. Sci. USA 101: 2696-2699   DOI   ScienceOn
15 ffrench-Constant, R.H., N. Waterfield and P. Daboffi. 2005, Insecticidal toxins from Photorhabdus and Xenorhabdus. pp. 239-253, In Comprehensive molecular insect science, eds. by L.I. Gilbert, I. Kostas and S.S. Gill, Elsevier, New York
16 Forcada, C., E. Alcacer, M.D. Garcera, A. Tato and R. Martinez. 1999, Resistance to Bacillus thuringiensis CrylAc toxin in three strains of Heliothis virescens proteolytic and SEM study of the larval midgut, Arch. Insect Biochem Physiol. 42: 51-63   DOI   ScienceOn
17 Kang, S., S. Han and Y. Kim. 2004, Identification of an entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, in Korea. J. Asia Pac. Entomol. 7: 331-337   DOI   ScienceOn
18 Ferre, 1. and J. Van Rie. 2002, Biochemistry and genetics of insect resistance to Bacillus thuringiensis, Annu. Rev. Entomol. 47: 501-533   DOI   ScienceOn
19 Forst, S., B. Dowds, N. Boemare and E. Stackebrandt. 1997, Xenorhabdus and Photorhabdus spp.: bugs that kill bugs, Annu.Rev. Microbiol. 51: 47-72   DOI   ScienceOn
20 Gillespie, lP., M.R. Kanost and T. Trenczek. 1997, Biological mediators of insect immunity, Annu. Rev. Entomol. 42:611-643   DOI   ScienceOn
21 Dennis, E.A. 1997, The growing phospholipase A2 superfamily of signal transduction enzymes, Trends. Biochem. Sci. 22: 1-2   DOI   PUBMED   ScienceOn
22 Dennis, E.A. 1994, Diversity of group types, regulation, and function of phospholipase $A_{2}$ J. BioI. Chem. 269: 13057-13060   PUBMED
23 Dunphy, G.B. and J.M. Webster. 1991, Antihemocytic surface components of Xenorhabdus nematophilus var. dutki and their modification by serum of nonimmune larvae of Galleria mellonella., J Invertebr. Pathol. 58: 40-51   DOI
24 Raymond, M. 1985, Presentation d'un programme d'analyse log-probit pour micro-ordinateur. Cah. ORS-TOM, Ser. Ent. Med. et Parasitol. 22: 117-121
25 Beckage, N.E. 2008, Insect immunology. 348 pp. Academic Press, New York
26 Dionne, M.S., L.N. Pham, M. Shirasu-Hiza and D.S. Schneider. 2006, Akt and FOXO dysregulation contribute to infectioninduced wasting in Drosophila, Curr. BioI. 16: 1977-1985   DOI   ScienceOn
27 Dunphy, G.B. and 1.M. Webster. 1984, Interaction of Xenorhabdus nematophilus subsp. nematophilus with the haemolymph of Galleria mellonella, J. Insect Physiol. 30: 883-889   DOI   ScienceOn
28 Ji, D., Y. Yi, G.H. Kang, Y.H. Choi, P. Kim, N.I. Baek and Y. Kim. 2004, Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plantpathogenic bacteria, FEMS Microbiol. Lett. 239: 241-248   DOI   ScienceOn
29 Haine, E.R., Y. Moret, M.T. Siva-Jothy and 1. Rolff. 2008, Antimicrobial defense and persistent infection in insects, Science 322: 1257-1259   DOI   PUBMED   ScienceOn
30 Kim, Y., D. Ji, S. Cho and Y. Park. 2005, Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression, J. Invertebr. Pathol. 89: 258-264   DOI   ScienceOn
31 Pham, L.N. and D.S. Schneider. 2008, Evidence for specificity and memory in the insect innate immune response. pp. 97-127, In Insect Immunology, ed. by N.E. Beckage. 348 pp. AcademicPress
32 Lavine, M.D. and M.R. Strand. 2002, Insect hemocytes and their role in cellular immune responses, Insect Biochem. Mol. BioI.32: 1237-1242   DOI   PUBMED   ScienceOn
33 Harrison, D.A., R. Binari, T.S. Nahreini, M. Gilman and N. Perrimon. 1995, Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects, EMBO J. 14: 2857-2865
34 Kwon, S. and Y. Kim. 2007, Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp. kurstaki against diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae).,BioI. Control 42:72-76   DOI   ScienceOn
35 Jacot, A., H. Scheuber, J. Kurtz and M.W. Brinkhof. 2005, Juvenile immune system activation induces a costly upregulation of adult immunity in field crickets, GryUus campestris, Proc. BioI. Sci. 272: 63-69   DOI   ScienceOn
36 Park, Y. and Y. Kim. 2000, Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae, J. Insect Physiol. 46: 1469-1476   DOI   ScienceOn
37 Stanley, D. 2006, Prostaglandins and other eicosanoids in insects: biological significance, Annu. Rev. Entomol 51: 25-44   DOI   PUBMED   ScienceOn
38 Qiu, P., P. Pan and S. Govind. 1998, A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis, Development 125: 1909-1920   PUBMED
39 Stanley, D. 2000, Eicosanoids in invertebrate signal transduction systems, 277 pp. Princeton University Press, New Jersey
40 Gahan, L.1., F. Gould and D.G. Heckel. 2001, Identification of a gene associated with Bt resistance in Heliothis virescens, Science 293: 857-860   DOI   PUBMED   ScienceOn