Browse > Article
http://dx.doi.org/10.5656/KSAE.2008.47.4.457

Characterization of Bacillus thuringiensis subsp. tohokuensis CAB167 Isolate against Mosquito Larva  

Kil, Mi-Ra (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University)
Kim, Da-A (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University)
Paek, Seung-Kyoung (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University)
Kim, Jin-Su (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University)
Choi, Su-Yeon (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University)
Jin, Da-Yong (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University)
Youn, Young-Nam (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University)
Hwang, In-Chon (Central Research Institute, Kyung Nong Co.)
Ohba, Michio (Bioresources and Management Laboratory, Graduate School of Agriculture, Kyushu University)
Yu, Yong-Man (Dept. Applied Biology, College of Agriculture and Life Science, Chungnam National University)
Publication Information
Korean journal of applied entomology / v.47, no.4, 2008 , pp. 457-465 More about this Journal
Abstract
Eight Bacillus thuringiensis strains activated against mosquito larva were compared their characterization. Spherical-shaped parasporal inclusion of B. thuringiensis subsp. tohokuensis CAB167 was observed by phase-contrast microscopy and scanning electron microscopy. $LC_{50}$ values of B. thuringiensis subsp. tohokuensis CAB167 against Culex pipiens molestus, Culex pipiens pallens, and Aedes aegyti were 173, 190 and 580 ng/ml, respectively. B. thuringiensis subsp. tohokuensis CAB167 had a parasporal inclusion containing 4 major protein components, for example, 135, 80, 49 and 28-kDa by SDS-PAGE. Otherwise, after trypsin digestion of parasporal inclusion, SDS-PAGE was showed new protease-resistant peptides at 72 and 63-kDa. Activated toxins of isolated CAB167 were different from other reference strains on a serological by immuno-diffusion test.
Keywords
Bacillus thuringiensis tohokuensis; Mosquitocidal; Parasporal inclusion;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Ohba, M., H. Iwahana. and S. Asano. 1992. Unique isolate of Bacillus thuringiensis serovar japonensis with a high larvicidal activity specified for scarabaeid beetles. Lett. Appl. Microbiol. 14: 54-57   DOI
2 Zouari, Nabil and J. Samir. 1997. Purification and immunological characterization of particular delta-endotoxins from three strains of Bacillus thuringiensis. Biotechol. Lett. 19(8): 825-829   DOI   ScienceOn
3 Cannon, R.J.C. 1996. Bacillus thuringiensis use in agriculture: A molecular perspective. Biol. Rev. Cambridge Phil. Soc. 71: 561-636   DOI   ScienceOn
4 Ishii. T and M. Ohba. 1994. The 23-kilodalton CytB protein is solely responsible for mosquito larvicidal activity of Bacillus thuringiensis serovar kyushuensis. Curr. Microbiol. 29: 91-94   DOI
5 Kim, H.S., H.W. Park, D.W. Lee, Y.M. Yu, J.I. Kim and S.K. Kang. 1995a. Distribution and characterization of Bacillus thuringiensis isolated from soils in Korea. Kor. J. Appl. Entomol. 34(4): 344-349   과학기술학회마을
6 Klowden, M.J., G.A. Held and L.A.B. JR. 1983. Toxicity of Bacillus thuringiensis subsp. israelensis to adult Ades aegypti Mosquitoes. Appl. Environ. Microbiol. 312-315
7 Koni, P.A and D.J .Ellar. 1993. Cloning and characterizaion of a novel Bacillus thuringiensis cytolytic delta-endotoxin. J. Mol. Biol. 229: 319-327   DOI   ScienceOn
8 Mizuki, E., M. Ohba, T. Akao, S. Yamashita, H. Satio and Y.S. Park. 1999. Unique activity associated with non-insecticidal Bacillus thuringiensis parasporal inclusions: in vitro cell-killing action on human cancer cell. Appl. Microbiolo. 86: 477-486
9 Ohba, M and K. Aizawa. 1990. Occurrence of two pathotypes in Bacillus thuringiensis subsp. fukukaensis (Flagella Serotype 3a: 3d: 3e). J. Invertebr. Pathol. 59: 99-103   DOI
10 Chilcott, C.N and P.J. Wigley. 1994. Opportunities for finding new Bacillus thuringiensis sratin collection. Appl. Eviron. Microbiolo. 64:4965-4972
11 Choi S.Y., S.C. Oh, M.S. Cho, S.K. Paek, J.S. Kim, D.A. Kim, M.R. Gill, Y.N. Youn and Y.M. Yu. 2007. Bioassay of environment -friendly insecticides for management of mosquito, Culex pipiens molestus. Kor. J. Appl. Entomol. 46(2): 261-267   과학기술학회마을   DOI   ScienceOn
12 Kim H.S., H.W. Park, D.W. Lee, Y.M. Yu and S.K. Kang. 1995c. Characterization of Bacillus thuringiensis isolated in Granary Dusts. Kor. J. Appl. Entomol. 34(3): 243-248   과학기술학회마을
13 Federici, B.A. 1993. Insecticidal bacterial proteins identify the midgut epithelium as a source of novel target site for insect control. Arch. Insect. Biochem. Physiol. 22: 357-371
14 Ohba, M., K. Aizawa and S. Shimizu. 1981. A new subspecies of Bacillus thuringiensis isolated in Japan: Bacillus thruingiensis subsp. tohokuensis (Serotype 17). J. Invertebr. Pathol. 38: 307 -309   DOI
15 Khodyrev, V.P., G.V. Kalmykova, L.I. Burtseva and V.V. Glupov. 2006. Characterizaion of crystal-forming bacteria Bacillus thuringiensis subsp. tohokuensis toxic to mosquite larvae. Biolo. Bull. 33(5): 513-516   DOI
16 WHO. 2005. Guidelines for lavoratory and field testing of mosquito larvicides. World Health Organizaion communicable disease control, prevention and eradication. WHO pesticide evaluation scheme
17 Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680 -685   DOI   ScienceOn
18 Dulmage, H.T. 1970. Insecticidal activity of HD-1, a new isolate of Bacillus thuringiensis var. alesti. J. Inverte. Pathol. 15: 232 -239   DOI
19 Ohgushi, A., N. Wasano and N. Shisa. 2003. Characterizaion of mosquiocidal Bacillus thuringiensis serovar sotto strain isolated from Okinawa, Jap. J. Appl. Microbiol. 95: 982-989   DOI   ScienceOn
20 Padua, L.E., M. Ohba and K. Aizawai. 1984. Isolation of a Bacillus thruingiensis strian (Serotype 8a:8b) highly and selectively toxic against mosquito larvae. J. Invertebr. Pathol. 44: 12-17   DOI
21 Nickerson, K.W. and L.A.Jr. Bulla. 1974. Physiology of sporeforming bacteria associated with insects minial nutritional requirement for growth sporulation and parasporal crystal formation in Bacillus thuringiensis. Appl. Environ. Microbiol. 28: 124-128
22 Crickmore, N., Zeigler. D.R and J. Feitelson. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. & Mol. Biolo. Rev. 62: 807-813
23 Kim H.S., D.W. Lee, H.W. Park, Y.M. Yu, J.I. Kim and S.K. Kang. 1995b. Distribution and characterization of Bacillus thuringiensis isolated from soils of sericultural farms in Korea. Kor. J. Appl. Entomol. 37(1): 57-61   과학기술학회마을
24 Yu, Y. M., M. Ohba and S. S. Gill. 1991. Characterization of mosquitocidal activity of Bacillus thuringiensis subsp. fukuokaensis crystal proteins. Appl. Environ. Microbiol. 57(4): 1075-1081
25 Choi S.Y., M.S. Cho, T.H. Kim, J.S. Kim, S.K. Paek, D.A., Y.N. Youn, S.S. Hong and Y.M. Yu. 2008. Bioactive characterization of Bacillus thuringiensis subsp. kurstaki CAB133 isolated from domestic soil. Kor. J. Appl. Entomol. 47(2): 175-184   과학기술학회마을   DOI   ScienceOn
26 Hernstadt, C., G.G. Soares, E.R. Wilcox and D.L. Edwards. 1986. A new strain of Bacillus thuringiensis with activity against coleoptetan insects. Biotechnol. 4: 305-308   DOI
27 Yu, Y.M., M. Ohba and K. Aizawa. 1987. Synergistic effects of the 65- and 25-kilodalton proteins of Bacillus thuringiensis strain PG-14 (serotype 8a:8b) in mosquito larvicidal activity. J. Gen. Appl. Microbiol. 33: 459-462   DOI
28 De Barros Moreira Beltrao, H and M.H. Silva-filha. 2007. Interaction of Bacillus thuringiensis svar. israelensis cry toxins with binding sites from Aedes aegyti (Diptera: Culicidae) larvae midgut. FEMS. Micro. Lett. 266(2): 163-169   DOI   ScienceOn
29 Ohba, M., H. Saitoh, K. Miyamoto, K. Higuchi. 1995. Bacillus thuringiensis serovar higo (flagellar serotype 44), a new serogroup with a larvicidal activity preferential for the anopheline mosquito. Letter in appl. Micro. 21(5): 316   DOI   ScienceOn
30 Ohgushi, A., H. Satioh, W. Naoya., A. Uemori and M. Ohba. 2005. Cloning and characterization of two novel genes, cry24B and s1orf2, from a mosquitocidal strain of Bacillus thuringiensis servar sotto. Curr. Microbiol. 51: 131-136   DOI
31 Zhong, C., D.J. Ellar, A. Bishop, C. Johnson, S. Lin and E.R. Hart. 2000. Characterizaion of a Bacillus thuringiensis $\delta$-endotoxin which is toxic to insects in three orders. J. Invertebr. Pathol. 76: 131-139   DOI   ScienceOn
32 Glare, T.R. and M. O'Callaghan. 2000. Bacillus thuringiensis: Biology, ecology and safety. Chichester: Wiley. 350.pp
33 Benintende, G.B., J.E. Lopez-Meza, J.G. Cozzi, C.F. Piccinetti, and J.E. Ibarra. 2000. Characterizaion of INTA 51-3, a new atypical strain of Bacillus thuringiensis from Argentina. Curr. Microbiol. 41: 396-401   DOI   ScienceOn
34 Wasano, N., K.H. Kim, M. Ohba. 1998. Delta-endotoxin proteins associated with spherical parasporal inclusions of the four Lepidoptera -specific Bacillus thuringiensis strains. Appl. Micro. 84(4): 501 -508   DOI   ScienceOn
35 Kim, D.A., J.S. Kim, M.R. Kil, Y.N. Youn, D.S. Park and Y.M. Yu. 2006. Isolation and activity of insect pathogenic Bacillus thuringiensis strain from soil. Kor. J. Appl. Entomol. 45(3): 357-362   과학기술학회마을
36 Federici, B.A., Luhy. P and J.E. Ibrarra. 1990. The parasporal body of Bacillus thuringiensis subsp. israelensis: structure, protein composition and toxicity. In: de Barjae, H and Sutherland, S., (eds) Bacterial control of mosquitoes and blackflies: Biochemistry, genetics and applications of Bacillus thuringiensis and Bacillus sphaericus. New Brunsick, NJ: Rutgers University Press. 16-24