Browse > Article

Isolation and Activity of Insect Pathogenic Bacillus thuringiensis Strain from Soil  

Kim, Da-A (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University Research Institute of Agricultural Sciences)
Kim, Jin-Su (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University Research Institute of Agricultural Sciences)
Kil, Mi-Ra (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University Research Institute of Agricultural Sciences)
Youn, Young-Nam (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University Research Institute of Agricultural Sciences)
Park, Dong-Sik (College of Agriculture and Life Sciences, Kangwon National University)
Yu, Yong-Man (Dept. Applied Biology, College of Agriculture and Life Sciences, Chungnam National University Research Institute of Agricultural Sciences)
Publication Information
Korean journal of applied entomology / v.45, no.3, 2006 , pp. 357-362 More about this Journal
Abstract
Bacillus thuringiensis strains were isolated from the domestic soil and a strain was selected that had a new host range and high toxicity against agriculture insect pest. The 142 samples of soil were sampled from the mountains, paddy fields and patches, in Daejon, Chungnam, Chungbuk and Jeonbuk and used for the investigation. Sixteen B. t strains were isolated from 12 samples among collected samples. There were 11 strains that showed toxical activity on Plutella xylostella (Lepidoptera: Yponomeutidae), 7 steins on Spodoptera litura (Lepidoptera: Noctuidae), 5 strains on Arete coerulea (Lepidoptera: Noctuidae), 5 strains on Culex pipiens pallens (Diptera: Culicidae) among the 16 isolated B. t strains. But there were not any strains that showed activity against Hyphanria cunea (Lepidoptera: Arctiidae) and Sitophilus oryzae (Coleoptera: Rhynchophoridae). And also some of B. thuringiensis strains showed insecticidal activity with 2, 3 or 4 kinds of insects. But there were also 3 strains that did not show any activities to the 6 insects which were used in the experiment. When examined with a phase-contrast microscope, the insecticidal crystal protein produced from 16 selected strains had 13 bipyramidal and 3 spherical shapes. The insecticidal bioactivity of the S. litura showed 100% mortality when there were $1.3{\times}10^{7}\;(cfu/ml)$ of CAB109 isolates.
Keywords
Bacillus thuringiensis; Isolation; Bioassay; Pluteila xylostella; Spodoptera litura; Culex pipiens pallens;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, H. S., H. W. Park, D. W. Lee, Y. M. Yu and S. K. Kang. 1995a. Cheracterization of Bacillus thuringiensis isolated in granary dust. Korean J. Apple. Entomol., 34(3): 243-248
2 Bernhard. K., P. Jarrett, M. Meadows, J. Butt, D. J. Ellis, G. M. Roberts, S. Pauli, P. Rodgers and H. D. Burges. 1997. Natural isolates of Bacillus thuringiensis: Worldwide distribution, characterization, and activity against insect pests. J. Invertebr. Pathol. 70: 59-68   DOI   ScienceOn
3 Gough, J. M., D, H. Kemp, R. J. Akhurst, R. D. Pearson and K. Kongsuwan. 2005. Identification and characterization of proteins from Bacillus thuringiensis with high toxic activity against the sheep blowfly, Lucilia cuprina. J. Invertebr. Pathol. 90: 39-46   DOI   ScienceOn
4 Yasutake, K., N. D. Binh, K. Kagoshima, A. Uemori, A. Ohgushi, M. Maeda, E. Mizuki, Y. M. Yu and M. Ohba. 2006. Occurence of parasporin-producing Bacillus thuringiensis in Vietnam. Can. J. Microbiol. 52: 365-372   DOI
5 Zheng, S. J., B. Henken, R. A. de Maagd, A. Purwito, F. A. Krens and C. Kik. 2005. Two different Bacillus thuringiensis toxin genes confer resistance to beet armyworm (Spodoptera exigua Hubner) in transgemic Bt-shallots (Allium cepa L.). 2005. Transgemic Research, 14: 261-272   DOI
6 Aronson, A. I., W. Beckman and P. Dunn. 1986. Bacillus thuringiensis and related insect pathogens. Microbil. Rev. 50: 1-24
7 Tamez-Guerra, P., A. A. Iracheta, B. Percyra-Alferez, L. J. Galan-Wong, R. Gomez-Flores, R. S. Tamez-guerra, and C. Rodiguez-Padilla. 2004. Characterization of Mexican Bacillus thuringiensis strains toxic for lepidopteran and coleopteran larvae. J. Invertebr. Pathol. 8: 7-18
8 Kim, H. S., D. W. Lee, S. D. Woo, Y. M. Yu and S. K. Kang. 1998. Biological, Immunological, and Genetic analysis of Baciflus thuringiensis isolated form granary in Korea. Curr Microbiol. 37: 52-57   DOI
9 Martin, P. A. W, and R. S. Travers. 1989. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 55: 2437-2442
10 Krieg, A., A. Huger, G. Langenbruch and W. Schnetter. 1983. Bacillus thuringiensis var. tenebrionis; A new pathotype effective against larvae of coleoptera. J. Appl. Entomol. 96: 500-508
11 Goldberg, L. J. and J. Margalit. 1977. A bacterial spore demonstration rapid larvicidal avticity against Anopheles serengotii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens. Mosq. news. 37: 355-358
12 da Silva, S. M. B., J. O. Silva-Werneck, R. Falcao, A. C. Gomes, R. R. Fragoso, M. T. Quezado, O. B. O. Neto, J. B. Aguiar, M. F. G. de Sa, A. Bravo and R. G. Monnerat. 2004. Characterization of novel Brazilian Bacillus thuringiensis strains active against Spodoptera frugiperda and other insect pests. J. Appl. Ent. 128: 102-107   DOI   ScienceOn
13 Apaydin, Ozgur., A. F. Yenidunya, S. Harsa and H. Gunes. 2005. Isolation and characterization of Bacillus thuringiensis strains from different grain habitats in Turkey. World Joumal of Microbiology & Biotechnology. 21: 285-292   DOI
14 Smith, R. A., and G. A. Couche. 1991. The phylloplane as a source of Bacillus thuringiensis. Appl. Environ. Microbiol. 57: 311-315
15 Gill. S. S., E. A. Cowles and V. Francis. 1995. Identification, isolation, and cloning of a Bacillus thuringiensis CryIAc toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens. J. Biol. Chem. 270: 27277-27282   DOI   ScienceOn
16 Kim, H. S., H. W. Park, D. W. Lee, Y. M. Yu, J. I. Kim and S. K. Kang. 1995b. Distribution and characterization of Bacillus thuringiensis isolated form soil in Korea. Korean J. Apple. Entomol., 34(4): 344-349
17 Kim, H. S., D. W. Lee, H. W. Park, Y. M. Yu, J. I. Kim and S. K. Kang. 1995c. Distribution and characterization of Bacillus thuringiensis isolated form soils of sericultural farms in Korea. Korean J. Seric. Sci., 37(1): 57-61   과학기술학회마을
18 DeLucca, A. J., M. S. Palmgren and A. Ciegler. 1981. Bacillus thuringiensis in grain elevator dusts. Can. J. Microbiol. 28: 452-456
19 Ohba, M. and K. Aizwa. 1978. Serological identification of Bacillus thuringiensis and related bacteria isolated in Japan. J. Invertebr. Pathol. 32: 303-309   DOI
20 Park, H. W., H. S. Kim, D. W. Lee, Y. M. Yu, B. R. Jin and S. K. Kang 1995. Expression and Synergistic effect of three types of crystal protein genes in Bacillus thuringiensis. Biochem. Biophys. Res. Commun., 214(2): 602-607   DOI   ScienceOn