Browse > Article

Mosquito Larvicidal Activity of Synechocystis PCC6803 Transformed with the cry11Aa gene to Culex tritaeniorhynchus and Anopheles sinensis  

이대원 (서울대학교 농업생명과학대학 농생명공학부)
Publication Information
Korean journal of applied entomology / v.43, no.1, 2004 , pp. 35-41 More about this Journal
Abstract
Bacillus thuringiensis produces crystal proteins toxic to medically and agriculturally important pests during sporulation. To improve the activity of insecticidal crystal protein in applying to mosquito larval control, an expression vector, pSyn4D harboring the mosquitocidal cry11Aa gene under control of psbA promoter of Amaranthus hybridus was constructed. This expression vector was transformed into Synechocystis PCC6803 and a transformant, Tr2C was selected with kanamycin. The mosquitocidal cry11Aa gene was stably integrated Into genomic DNA of Tr2C in PCR detection using cry11Aa-specific primers. The transformant expressed 72-kDa Cry11Aa protein and median lethal time (LT$\sub$50/) was approximately 2.1 days for Culex tritaeniorhynchus larvae and 0.7 day for Anopheles sinensis larvae, respectively. These results suggest this transformant can be used for mosquito larval control as a biological control agent.
Keywords
Mosquiot larva; Bacillus thuringiensis; cry11Aa gene; Synechocystis PCC6803;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aronson, A.L, W. Beckman and P. Dunn. 1986. Bacillus thuringiensis and related insect pathogens. Microbiol. Rev. 50: 1-24
2 Kim, H.S., D.W. Lee, S.D. Woo, Y.M. Yu and S.K. Kang. 1998. Distribution, serological identification and PCR analysis of Bacillus thuringiensis isolated from soils of Korea. Curr. Microbiol. 37: 195-200   DOI   ScienceOn
3 Murphy, R.C. and S.E. Stevens. 1992. Cloning and expression of cryIVD gene of BuciIlus thuringiensis subsp. israelensis in the cyanobacterium AgmeneIIum quadruplicatum PR-6 and its resulting larvicidal activity. Appl. Environ. Microbiol. 58: 1650-1655
4 Porter, R.D. 1988. DNA transformation. Methods Enzymol. 167: 703-712   DOI   PUBMED
5 Waalwijk, C., A.M. Dullemans, M.E.S, Van Workman and B. Visser. 1985. Molecular cloning and the nucleotide sequence of the M 28000 crystal protein gene of Bacillus thuringiensis subsp. israelensis. Nucleic Acids Res. 13: 8207-8217   DOI   ScienceOn
6 Wirth, M.C., G.P. Georghiou and B.A. Federici. 1997. CytlA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in mosquito, CuIex quinquefasciatus. Proc. Natl. Acad. Sci. USA 94: 10536-10540   DOI   ScienceOn
7 Pfannenstiel, M.A., G.A. Gouche, EJ. Ross and K.W. Nickerson. 1986. Immunological relationship among proteins making up the Bacillus thuringiensis subsp. israelensis crystalline toxin. Appl. Environ. Microbiol. 52: 644-649
8 Crickmore, N., S. Poncet, A. Klier and DJ. Ellar. 1995. Contribution of the individual components of \delta-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis. FEMS Microbial. Lett. 131: 249-254
9 Angsuthanasombat, C. and S. Panyim. 1989. Biosynthesis of 130kilodalton mosquito larvicide in the cyanobacterium Agmenellum quadruplicatum PR-6. AppI. Environ. Microbiol. 55: 2428-2430
10 Magalith, Y. and E. Ben-Dov. 2000. Biological control by Baciltus thuringiensis subsp. israeIensis. pp. 243-301. In Insect Pest Management: Techniques for Environmental Protection, eds. by J.E. Rechcigl and N.A. Rechcigl. 408pp. Lweis Publisher, Boca Raton, FL
11 Gill, S.S., E.A. Cowles and P.V. Pietrantonio, 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636   DOI   ScienceOn
12 Raymond, K.C., H. Waboko, R.M. Faust and L.A. Bulla, Jr. 1990. Transfer of the Bacillus thuringiensis mosquitocidal toxin gene into mosquito larval food sources, pp. 94-109. In Bacterial control of mosquitoes and blackflies: biochemistry, genetics, and applications of Bacillus thuringiensis and Bacillus sphaericus, eds. by H. de Barjac and D. Sutherland. 336pp. Rutgers University Press, New Brunswick, NJ
13 Manasherob, R., E. Ben-Dov, X. Wu, S. Boussiba and A. Zaritsky. 2002. Protection from UV-B damage of mosquito larvicidal toxins from Bacillus thuringiensis subsp. israelensis expressed in Anabaena PCC7120. Curr. Microbiol. 45: 217-220   DOI   ScienceOn
14 Khasdan, V., E. Ben-Dov, R. Manasherob, S. Boussiba and A. Zaritsky. 2001. Toxicity and synergism in transgenic Escherichia coli expressing four genes from BaciIlus thuringiensis subsp. israelensis. Environ. Microbiol. 3: 798-806   DOI   ScienceOn
15 Ehling-Schulz, M., W. Bilger and S. Scherer. 1997. UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J. Bacteriol. 179: 1940-1945
16 Lluisma, A.O., N. Karmacharya, A. Zarka, E. Ben-Dov, A. Zaritsky and S. Boussiba. 2001 Suitability of Anabaena PCC7120 expressing mosquitocidal toxin genes from Bacillus thuringiensis subsp. israelensis for biotechnological application. Appl. Microbiol. Biotechnol. 57: 161-166   DOI   ScienceOn
17 Dzelzkans, V.A. and L. Bogorad. 1986. Stable transformation of cyanobacterium Synechocystis sp. PCC6803 induced by UV irridation. J. Bacteriol. 165: 964-971
18 H$\"o$fte, H. and H.R. Whiteley. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53: 242-255
19 Poncet, S., A. Delecluse, A. Klier and G. Rapoport. 1995. Evaluation of synegistic interactions among the CryIVA, CryIVB and CryIVD toxic components of B. thuringiensis subsp. israelensis crystals. J. Invertebr. Pathol. 43: 140-143   DOI
20 Thomas, W.E. and D.J. Ellar. 1983. Bacillus thuringiensis var. israelensis crystal \delta-endotoxin: effects on insect and mammalian cells in vitro and in vivo. J. Cell Sci. 60: 181-197
21 Cohen, E., H. Rozen, T. Joseph, S. Braun and L. Margulies. 1991. Photoprotection of Bacillus thuringiensis kurstaki from ultraviolet irradiation. J. Invertebr. Pathol. 57: 343-351   DOI   ScienceOn
22 Cote, R.J. and R.L. Gherna. 1994. Nutrition and media. pp.155-178. In Methods for general and molecular bacteriology, eds. by P. Gerhardt, R.G.E. Murray, W.A. Wood and N.R. Kreig. 791pp. American Society for Microbiology, Washington, DC
23 Soltes-Rak, E., DJ. Kushner, D.D. Williams and J.R. Coleman. 1993. Effect of promoter modification on mosquitocidal cryIVB gene expression in Synechococcus sp. strain PCC7942. Appl. Environ. Microbiol. 59: 2404-2410
24 Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriphage T4. Nature 227: 680-685   DOI   PUBMED   ScienceOn
25 Towbin, H.R., R. Stachelin and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets : Procedure and some applicatin. Proc. Natl. Acad. Sci. USA 76: 4350-4354   DOI   ScienceOn
26 Wu, X.Q., S.J. Vennison, L. Huirong, E. Ben-Dov, A. Zaritsky and S. Boussiba. 1997. Mosquito larvicidal activity of transgenie Anabaena strain PCC 7120 expressing combinations of genes from Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 63: 4971-4974
27 Delecluse, A., J.F. Charles, A. Klier and G. Rapoport. 1991. Deletion by in vivo recombination shows that 28-kilodalton cytolytic polypeptide from Bacillus thuringiensis subsp. israelensis is not essential for mosquitocidal activity. J. Bacteriol. 173: 3374-3381
28 Tandeau de Marsac, N., F. de la Torre and J. Szulmaster. 1987. Expression of the larvicidal gene of Bacillus sphaericus 159M in the cyanobacterium Anacystis nidulans. Mol. Gen. Genet. 209. 396-398   DOI   ScienceOn