Browse > Article
http://dx.doi.org/10.6114/jkood.2016.29.3.150

The Effect of Gyejakjimo-tang on c-Fos Expression in Mice Model of Acute Pain  

Noh, Hee-Youb (Department of Anatomy-Pointology, College of Korean Medicine, Gachon University)
Kim, Youn-Sub (Department of Anatomy-Pointology, College of Korean Medicine, Gachon University)
Kim, Do-Hoon (Department of Korean Medical Classics & History, Gachon University)
Publication Information
The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology / v.29, no.3, 2016 , pp. 150-158 More about this Journal
Abstract
Objectives : We want to know the effect of Gyejakjimo-tang in mice model of acute pain.Methods : We investigated writhing reflex in mice with acetic acid-induced abdominal pain using mice, we observed c-Fos protien expression by immunohistochemistry dyeing method in the paraventricular nucleus(PVN) and supraoptic nucleus(SON) of the hypothalamus.Results : All of Gyejakjimo-tang treated group suppressed acetic acid-induced writhing response as acetic acid injuction group, but in 100㎎/㎏ Gyejakjimo-tang treated group and 200㎎/㎏ Gyejakjimo-tang treated groups represernted significance. All of Gyejakjimo-tang treated groups(50, 100 and 200㎎/㎏ Gyejakjimo-tang-treated group), Fos-positive cells in PNV significantly decreased as acetic acid injuction group, and All of Gyejakjimo-tang-treated groups Fos-positive cells in SON significantly decreased as acetic acid injuction group.Conclusions : The present results showed that the mice pre-treated with the aqueous extract of Gyejakjimo-tang showed analgesic effect on acetic acid-induced abdominal pain.
Keywords
Gyejakjimo-tang; pain; acetic acid; c-Fos;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chae IS. Sanghannonyeokjeon. 5th ed. Seoul: Gomunsa. 1987:306-7.
2 Yumoto KS, Ju GJ. Hwanghanuihak. 2nd ed. Seoul:Gyechukmunhwasa. 1982:343-6.
3 Kim SS, Kim HK, Choi JW, Lee JK. Antiinflammatory, Analgesic and Antihyperuricemic Effects of 'Gyejakjimo - Tang' in Rats. Kor J Pharmacogn. 1995:26(1):66-73.
4 Livingston EH, Passaro EP. Postoperative ileus. Dig Dis Sci. 1990;35:121-32.   DOI
5 Rivière PJM, Pascaud X, Chevalier E, Le Gallou B, Junien JL. Fedotozine reverses ileus induced by surgery and peritonitis: action at peripheral κ-opioid receptors. Gastroenterology. 1993;104:724-31.   DOI
6 Bonaz B, Rivest S. Effect of a chronic immobilization stress on CRF neuronal activity and expression of its type 1 receptor in the rat brain. Am J Physiol(Regul Integr Physiol). 1998;275:R1438-49.
7 Dunn AJ, Berridge CW. Physiological and behavioral responses to corticotropin-releasing factor administration: Is CRF a mediator of anxiety of stress responses? Brain Res Rev. 1990;15:71-100.   DOI
8 Koob GF, Bloom FE. Corticotropin-releasing factor and behavior. Fed Proc. 1985;44:259-63.
9 Nemeroff CB, Owens MG, Bissette G, Andorn AC, Stanley M. Reduced corticotropinreleasing factor receptor binding sites in the frontal cortex of suicid victims. Arch Gen Psychiatry. 1988;45:557-79.
10 Sawchenko PE, Swanson LW. Organization of CRF immunoreactive cells and fibers in the rat brain: immunohistochemical studies. In:DeSouza E, Nemeroff C. Corticotropinreleasing factor: basic and clinical studies of a neuropeptide. FL:CRC Press, Boca Raton. 1990:29-51.
11 Arnold FJ, De Lucas Bueno M, Shiers H, Hancock DC, Evans GI, Herbert J. Expression of c-fos in regions of the basal limbic forebrain following intracerebroventricular corticotropin-releasing factor in unstressed or stressed male rats. Neuroscience. 1992;51: 377-90.   DOI
12 Bonaz B, Plourde V, Taché Y. Abdominal surgery induces fos immunoreactivity in the rat brain. J Comp Neurol. 1994;349:212-22.   DOI
13 Menètrey D, Gannon A, Levine JD, Basbaum AI. Expression of c-fos protein in interneurons and projection neurons of the rat spinal cord in response to noxious somatic, articular, and visceral stimulation. J Comp Neurol. 1989;285:177-95.   DOI
14 Clark M, Weiss SR, Post RM. Expression of c-fos mRNA in rat brain after intracerebroventricular administration of corticotropinreleasing hormone. Neurosci Lett. 1991;132: 235-8.   DOI
15 Dragunow M, Faull R. The use of c-fos as a metabolic marker in neuronal pathways tracing. J Neurosci Methods. 1989;29:261-5.   DOI
16 Lantèri-Minet M, Isnardon P, De Pommery J, Menètrey D. Spinal and hindbrain structure involved in visceroception and visceronociception as revealed by the expression of Fos, Jun and Krox-24 proteins. Neuroscience. 1993;55:737-53.   DOI
17 Morgan JI, Curran T. Inducible protooncogenes of the nervous system: their contribution to transcription factors and neuroplasticity. Prog Brain Res. 1990;86: 287-94.   DOI
18 Bonaz B, Rivière PJM, Sinniger V, Pascaud X, Junien JL, Fournet J, et al. Fedotozine, a kappa-opioid agonist, prevents spinal and supra-spinal Fos expression induced by a noxious visceral stimulus in the rat. Neurogastroenterology and Motility. 2000;12: 135-48.   DOI
19 Lee MH, Kim H, Lim BV, Chang HK, Lee TH, Jang MH, et al. Naloxone potentiates treadmill running-induced increase in c-Fos expression in rat hippocampus. Life Sci. 2003;73:3139-47.   DOI
20 Franzotti EM, Santos CV, Rodrigues HM, Mourao RH, Andrade MR, Antoniolli AR. Anti-inflammatory, analgesic activity and acute toxicity of Sida cordifolia L. (Malva-branca). J Ethnopharmacol. 2000;72 (1-2):273-7.   DOI
21 Sakaguchi T, Ohtake M. Inhibition of gastric motility induced by activation of the hypothalamic paraventricular nucleus. Brain Res. 1985;335:365-7.   DOI
22 Griffiths RJ. Prostaglandins and inflammation. In: Gallin JI, Snyderman R Editors, Inflammation. Basic Principle and Clinical Correlates. 3rd ed. Philadelphia:Lippincott Williams and Wilkins Press. 1999:349-60.
23 Masferrer JL, Zweifel BS, Manning PT, Hauser SD, Leahy KM, Smith WG, et al. Selective inhibition of inducible cyclooxygenase 2 in vivo is anti-inflammatory and nonulcerogenic. Proceedings of National Academy of Science of the United States of America. 1994;91:3228-32.   DOI
24 Bonaz B, Martin L, Beurriand E, Hostein J, Feuerstein C. Involvement of hypothalamic noradrenergic systems in the modulation of MMCpatterns in rats. Brain Res. 1992;583:332-5.   DOI
25 Gillis RA, Quest JA, Pagani FD, Norman WP. Control centers in the central nervous system for regulating gastrointestinal motility. In: Wood JD, editor. Handbook of physiology. Bethesda, MD:American Physiological Society. 1988.
26 Rivest S, Rivier C. Stress and interleukin-1-induced activation of c-fos, NGFI-B and CRFgene expression in the hypothalamic PVN: comparison between Sprague-Dawley, Fisher-344 and Lewis rats. J Neuroendocrinology. 1994;6:101-17.   DOI
27 Koster R, Anderson M, de Beer EJ. Acetic acid for analgesic screening. Fed Proc. 1959;18:412.
28 Loewy AD. Central autonomic pathways. In: Loewy AD, Spyer KM. Central regulation of autonomic functions. Oxford:Oxford University Press. 1990:88-103.
29 Cunningham Jr. ET, Sawchenko PE. Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. J Comp Neurol. 1988;274:60-76.   DOI
30 Taché Y, Barquist E, Stephens RL, Rivier J. Abdominal surgery- and trephination-induced delay in gastric emptying is prevented by intracisternal injection of CRF antagonist in the rat. J Gastrointest Motil. 1991;3:19-25.   DOI
31 Rivière PJM, Pascaud X, Chevalier E, Le Gallou B, Junien JL. Fedotozine reverses ileus induced by surgery and peritonitis: action at peripheral κ-opioid receptors. Gastroenterology. 1993;104:724-31.   DOI